Fear of predation can have wide-ranging ecological effects. This is especially true in the ocean's pelagic zone, the Earth's largest habitat, where vertical gradients in light and primary productivity force numerous taxa to migrate vertically each night to feed at the surface while minimizing risk from visual predators. Despite its importance and the fact that it is driven by spatial differences in perceived risk, diel vertical migration (DVM) is rarely considered within the "landscape of fear" framework. It is also far from the only such process in the pelagic zone. We used continuous, year-long records from an upward-looking echosounder and broadband hydrophone at a cabled observatory off Central California, USA, to observe avoidance reactions by several groups of pelagic animals to the presence of their predators. As expected, vertical migration was ubiquitous, but we also observed behaviors at shorter and longer timescales that were best explained by fear of predation. The presence of foraging odontocetes induced immediate diving behavior in mesopelagic sound-scattering layers, and schools of epipelagic fishes induced similar reaction in layers of zooplankton and mesopelagic micronekton. At longer timescales, the presence of fish schools significantly deepened vertical migration, rearranging life throughout the water column. We argue that behavioral reactions to predation risk are common in the pelagic zone at a range of spatiotemporal scales and that our understanding of food webs and biogeochemical cycling in this immense biome will be incomplete unless we account for fear.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.cub.2021.09.003 | DOI Listing |
J Hazard Mater
January 2025
Universidade Federal do Rio de Janeiro (UFRJ), Instituto de Biodiversidade e Sustentabilidade (NUPEM), Av. São José do Barreto, 764, Macaé, RJ 27965-045, Brazil.
We investigated MP ingestion in lanternfishes (Myctophidae), one of the most abundant vertebrates in the world, using archived specimens from museum collections from 1999 to 2017. Microplastics were detected in 55 % of the 1167 specimens analysed (0.95 ± 1.
View Article and Find Full Text PDFR Soc Open Sci
January 2025
Fisheries Research Station Baden-Württemberg, Argenweg 50/1, 88085 Langenargen, Germany.
Adaptive divergence and increased genetic differentiation among populations can lead to reproductive isolation. In Lake Constance, Germany, a population of invasive three-spined stickleback () is currently diverging into littoral and pelagic ecotypes, which both nest in the littoral zone. We hypothesized that assortative mating behaviour contributes to reproductive isolation between these ecotypes and performed a behavioural experiment in which females could choose between two nest-guarding males.
View Article and Find Full Text PDFSci Rep
January 2025
Globe Institute, Section for Biodiversity, University of Copenhagen, Universitetsparken 15, 2100, Copenhagen Ø, Denmark.
Mid-water column turbulence has been shown to cause elevated vertical nutrient flux at the shelf edge in the northeastern North Sea. Here, we demonstrate that phytoplankton communities in this region tend to be dominated by larger cells (estimated from percentage of chlorophyll captured on a 10 μm filter) than beyond the shelf edge. F/F (PSII electron transport capacity) corrected for photoinhibition in the surface layer correlated in this study with the percentage of chlorophyll captured on a 10 µm filter (assumed to be large cells), suggesting that the phytoplankton community was responding to increased nutrients in the euphotic zone by increasing photosynthetic efficiency and altering community composition.
View Article and Find Full Text PDFJ Fish Biol
January 2025
Federal Research Institute for Rural Areas, Forestry and Fisheries, Thünen Institute of Fisheries Ecology, Bremerhaven, Germany.
Understanding the habitat use of individuals can facilitate methods to measure the degree to which populations will be affected by potential stressors. Such insights can be hard to garner for marine species that are inaccessible during phases of their annual cycles. Here, we quantify the link between foraging habitat and behaviour in an aquatic bird of high conservation concern, the red-throated diver () across three breeding populations (Finland, Iceland and Scotland) during their understudied moult period.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!