Bufotenine, an alkaloid that can be found in plant extracts and skin secretions of amphibians, is reported to have potential antiviral activity. The present study evaluated the antiviral activity of bufotenine against different genetic lineages of rabies virus (RABV, a single-stranded, negative-sense RNA virus), canine coronavirus (CCoV, a positive-sense RNA virus) and two double-stranded DNA viruses (two strains of herpes simplex virus type 1/HSV-1 [KOS and the acyclovir-resistant HSV-1 strain 29R] and canine adenovirus 2, CAV-2). The maximal non-toxic bufotenine concentrations in Vero and BHK-21 cells were determined by MTT assays. The antiviral activity of bufotenine against each virus was assessed by examination of reductions in infectious virus titres and plaque assays. All experiments were performed with and without bufotenine, and the results were compared. Bufotenine demonstrated significant RABV inhibitory activity. No antiviral action was observed against CCoV, CAV-2 or HSV-1. These findings indicate that the antiviral activity of bufotenine is somewhat linked to the particular infectious dose used and the genetic lineage of the virus, although the mechanisms of its effects remain undetermined.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8475449 | PMC |
http://dx.doi.org/10.1007/s42770-021-00612-1 | DOI Listing |
J Nat Med
December 2024
School of Agriculture, Tokai University, 871-12 Sugido, Mashiki-Cho, Kamimashiki-Gun, Kumamoto, 861-2205, Japan.
Ipomoea alba L. (Convolvulaceae) is an annual vine native to tropical America that is cultivated primarily for ornamental purposes. Its seeds are used in traditional medicine as a laxative, and young shoots are consumed as food.
View Article and Find Full Text PDFVet Sci
December 2024
Pingliang Vocational and Technical College, Pingliang 744000, China.
Porcine reproductive and respiratory syndrome virus (PRRSV) is a highly contagious virus affecting pigs with significant impacts to the swine industry worldwide. This review provides a comprehensive understanding of post-translational modifications (PTMs) associated with PRRSV infection. We discuss the various types of PTMs, including phosphorylation, ubiquitination, SUMoylation, acetylation, glycosylation, palmitoylation, and lactylation, that occur during PRRSV infection.
View Article and Find Full Text PDFToxins (Basel)
December 2024
Department of Chemistry, University of Ghana, Legon-Accra P.O. Box LG56, Ghana.
Mycolactone is a complex macrolide toxin produced by , the causative agent of Buruli ulcer. The aim of this paper is to review the chemistry, biosynthetic, and synthetic pathways of mycolactone A/B to help develop an understanding of the mode of action of these polyketides as well as their therapeutic potential. The synthetic work has largely been driven by the desire to afford researchers enough (≥100 mg) of the pure toxins for systematic biological studies toward understanding their very high biological activities.
View Article and Find Full Text PDFNanomaterials (Basel)
December 2024
Department of Molecular Biology and Genetics, Çanakkale Onsekiz Mart University, Çanakkale 17100, Türkiye.
Nanoparticles (NPs) have emerged as a potent choice for various applications, from drug delivery to agricultural studies, serving as an alternative and promising methodology for future advancements. They have been widely explored in delivery systems, demonstrating immense promise and high efficiency for the delivery of numerous biomolecules such as proteins and anticancer agents, either solely or modified with other compounds to enhance their capabilities. In addition, the utilization of NPs extends to antimicrobial studies, where they are used to develop novel antibacterial, antifungal, and antiviral formulations with advanced characteristics.
View Article and Find Full Text PDFMar Drugs
November 2024
College of Pharmacy, Yonsei Institute of Pharmaceutical Sciences, Yonsei University, Incheon 21983, Republic of Korea.
Four previously undescribed pentacyclic triterpenoid saponins, pannosides F-I (-), were isolated from the halophyte L. (), and their chemical structures were elucidated using 1D and 2D NMR spectroscopy and mass spectrometry. Comprehensive structural analysis revealed the presence of distinct aglycone and glycosidic moieties, along with complex acylation patterns.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!