AI Article Synopsis

  • BC's forest resources present significant opportunities for climate change mitigation, but face challenges due to the Mountain Pine Beetle outbreak and wildfires, leading to a decline in wood harvests.
  • The research examined the greenhouse gas emissions of nine strategies for using harvested wood products, comparing domestic consumption versus international exports.
  • Results showed that while inward-focused strategies achieved modest emission reductions, exporting wood for long-term uses was more beneficial for carbon storage, though it could negatively impact the economy if short-lived product exports were restricted.

Article Abstract

Background: British Columbia's (BC) extensive forest resources provide climate change mitigation opportunities that are available to few other jurisdictions. However, as a consequence of the Mountain Pine Beetle outbreak and large-scale wildfires, BC is anticipating reduced roundwood harvest for the next decades. Progress towards more climatically efficient utilization of forest resources is needed. This research quantitatively compared the greenhouse gas emission consequences of nine harvested wood products trade and consumption strategies. Inward-focused strategies use wood products within Canada to achieve emission reduction objectives, while outward-focused strategies encourage exports of wood products.

Results: In the business-as-usual baseline scenario, average emissions arising from BC-originated harvested wood products between 2016 and 2050 were 40 MtCOe yr. The estimated theoretical boundaries were 11 MtCOe yr and 54 MtCOe yr, under the scenarios of using all harvests for either construction purposes or biofuel production, respectively. Due to the constrained domestic market size, inward-focused scenarios that were based on population and market capacity achieved 0.3-10% emission reductions compared to the baseline. The international markets were larger, however the emissions varied substantially between 68% reduction and 25% increase depending on wood products' end uses.

Conclusions: Future bioeconomy strategies can have a substantial impact on emissions. This analysis revealed that from a carbon storage and emission perspective, it was better to consume BC's harvests within Canada and only export those products that would be used for long-lived construction applications, provided that construction market access beyond the US was available. However, restricting export of wood products destined for short-lived uses such as pulp and wood pellets would have significant economic and social impacts. On the other hand, inward-focused strategies had a small but politically and environmentally meaningful contribution to BC's climate action plan. This study also revealed the conflicts between a demand-driven bioeconomy and targeted environmental outcomes. A hierarchical incentive system that could co-exist with other market drivers may help achieve emission reduction goals, but this would require a better quantitative understanding of wood products' substitution effects. While the analyses were conducted for BC, other regions that are net exporters of wood products may face similar issues.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8466961PMC
http://dx.doi.org/10.1186/s13021-021-00193-4DOI Listing

Publication Analysis

Top Keywords

wood products
24
harvested wood
12
wood
10
bioeconomy strategies
8
british columbia's
8
products
8
carbon storage
8
storage emission
8
emission perspective
8
forest resources
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!