There is only one known portal system in the mammalian brain - that of the pituitary gland, first identified in 1933 by Popa and Fielding. Here we describe a second portal pathway in the mouse linking the capillary vessels of the brain's clock suprachiasmatic nucleus (SCN) to those of the organum vasculosum of the lamina terminalis (OVLT), a circumventricular organ. The localized blood vessels of portal pathways enable small amounts of important secretions to reach their specialized targets in high concentrations without dilution in the general circulatory system. These brain clock portal vessels point to an entirely new route and targets for secreted SCN signals, and potentially restructures our understanding of brain communication pathways.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8463669 | PMC |
http://dx.doi.org/10.1038/s41467-021-25793-z | DOI Listing |
Cell Res
January 2025
Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, Changsha, Hunan, China.
Sleep deficiency is associated with obesity, but the mechanisms underlying this connection remain unclear. Here, we identify a sleep-inducible hypothalamic protein hormone in humans and mice that suppresses obesity. This hormone is cleaved from reticulocalbin-2 (RCN2), and we name it Raptin.
View Article and Find Full Text PDFVitam Horm
January 2025
Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Ciudad Autónoma de Buenos Aires, Argentina; Centro de Estudios Biomédicos Básicos, Aplicados y Desarrollo (CEBBAD), Universidad Maimónides, Ciudad Autónoma de Buenos Aires, Argentina. Electronic address:
Light is the most reliable environmental cue allowing animals to breed successfully when conditions are optimal. In seasonal breeders, photoperiod (length of daylight) information is sensed by the eyes and transmitted to the suprachiasmatic nucleus, the master clock region located in the hypothalamus. This structure has a 24-h firing rhythm involving a cycle of clock protein synthesis and degradation, and provides the timing to synchronize the synthesis and release of melatonin, the chemical signal that transduces the photoperiod information.
View Article and Find Full Text PDFHandb Clin Neurol
January 2025
Massachusetts General Hospital, Boston, MA, United States.
Irregular sleep-wake rhythm disorder (ISWRD) is an intrinsic circadian rhythm disorder caused by loss of the brain's circadian regulation, through changes of the input and/or output to the suprachiasmatic nucleus (SCN), or of the SCN itself. Although there are limited prevalence data for this rare disease, ISWRD is associated with neurodegenerative disorders, including the Alzheimer disease (AD) and the Parkinson disease (PD), which will become increasingly prevalent in an aging population. It additionally presents in childhood developmental disorders, psychiatric disorders, and traumatic brain injury (TBI).
View Article and Find Full Text PDFHandb Clin Neurol
January 2025
Sleep Medicine Center, Department of Neurology, Villa Serena Hospital, Città S. Angelo, Pescara, Italy; Villaserena Research Foundation, Città S. Angelo, Pescara, Italy.
Advanced sleep phase (ASP) is seldom brought to medical attention because many individuals easily adapt to their early chronotype, especially if it emerges before the age of 30 and is present in a first-degree relative. In this case, the disorder is considered familial (FASP) and is mostly discovered coincidentally in the presence of other sleep disorders, mainly obstructive sleep apnea syndrome (OSAS). The prevalence of FASP is currently estimated to be between 0.
View Article and Find Full Text PDFHandb Clin Neurol
January 2025
Centre for Chronobiology, Psychiatric Hospital of the University of Basel, Basel, Switzerland; Research Cluster Molecular and Cognitive Neurosciences, University of Basel, Basel, Switzerland; Department of Biomedicine, University of Basel, Basel, Switzerland.
The nonvisual effects of light in humans are mainly conveyed by a subset of retinal ganglion cells that contain the pigment melanopsin which renders them intrinsically photosensitive (= intrinsically photosensitive retinal ganglion cells, ipRGCs). They have direct connections to the main circadian clock in the suprachiasmatic nuclei (SCN) of the hypothalamus and modulate a variety of physiological processes, pineal melatonin secretion, autonomic functions, cognitive processes such as attention, and behavior, including sleep and wakefulness. This is because efferent projections from the SCN reach other hypothalamic nuclei, the pineal gland, thalamus, basal forebrain, and the brainstem.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!