A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Nanocellulose-mediated transparent high strength conductive hydrogel based on in-situ formed polypyrrole nanofibrils as a multimodal sensor. | LitMetric

Nanocellulose-mediated transparent high strength conductive hydrogel based on in-situ formed polypyrrole nanofibrils as a multimodal sensor.

Carbohydr Polym

Key Lab of Science and Technology of Eco-textile, Ministry of Education, College of Chemistry, Chemical Engineering and Biotechnology, Innovation Center for Textile Science and Technology, Donghua University, Shanghai 201620, People's Republic of China; Innovation Center for Textile Science and Technology of DHU, Donghua University, Shanghai 201620, People's Republic of China. Electronic address:

Published: December 2021

A simple method was provided to prepare a transparent, highly conductive, mechanically reinforced, stretchable, and compressible hydrogel. In this system, pyrrole (Py) monomers were gently polymerized and uniformly deposited on the surface of cellulose nanofiber (CNF) via the improved in-situ polymerization. In the opaque PPy@CNF suspension, acrylamide monomers (AM) were dissolved and radical-polymerized to construct the PPy@CNF-PAM hydrogel with the in-situ formation of PPy nanofibrils in the presence of excess ammonium persulfate (APS). The in-situ formed PPy nanofibrils were well intertwined with the CNF and PAM chains, and a highly conductive path was established and permitted visible light to pass through. The amphipathic CNF took along and dispersed PPy aggregates well, and reinforced the hydrogel after formation of PPy nanofibrils. In view of the improved mechanical compressive, stretchable properties and excellent electrical conductivity (4.5 S/m), the resulting hydrogels could serve as a potential electrical device in a range of applications.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.carbpol.2021.118600DOI Listing

Publication Analysis

Top Keywords

ppy nanofibrils
12
in-situ formed
8
highly conductive
8
formation ppy
8
nanocellulose-mediated transparent
4
transparent high
4
high strength
4
strength conductive
4
hydrogel
4
conductive hydrogel
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!