Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Objective: Peaks in the beta band of local field potentials (LFPs) may serve as a biological feedback signal for closed-loop deep brain stimulation (DBS) in Parkinson's disease (PD). However, the specific frequency of such peaks and their response to DBS and to different types of movement remains uncertain. In the present study, the authors examined the abundance of discernible peaks in the beta band and the effect of different types of movement and DBS on these peaks.
Methods: Subthalamic nucleus LFPs were analyzed from 38 patients with PD in a frequency range between 10 and 35 Hz, as well as the impact of movement (gait, hand movements) and electrical stimulation on these peaks. The position of the electrode segments from which LFPs were recorded was computed.
Results: The authors found a bimodal distribution of peaks in the beta band with discernible high- (27 Hz) and low-frequency (15 Hz) peaks. Movement of either hand had no significant effect on these peaks, whereas walking significantly reduced high-frequency beta peaks but not the peaks in the low beta band. Stimulation caused an amplitude-dependent suppression of both peaks.
Conclusions: DBS suppresses LFP beta peaks of different frequencies, whereas beta suppression caused by movement is dependent on the type of movement and frequency of the peak. These results will support the investigation of distinct LFP spectra for the application of closed-loop DBS.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.3171/2021.3.JNS204113 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!