Excited state hydrogen atom transfer pathways in 2,7-diazaindole - S (S = HO and NH) clusters.

Spectrochim Acta A Mol Biomol Spectrosc

Department of Chemistry, IIT Hyderabad, Kandi, Sangareddy, Telangana 502285, India. Electronic address:

Published: January 2022

The photoinduced tautomerization reactions via hydrogen atom transfer in the excited electronic state (ESHT) have been computationally investigated in 2,7-diazaindole (27DAI) - (HO) and 27DAI - (NH) isolated clusters to understand the role of various solvent wires. Two competing ESHT reaction pathways originating from the N(1)-H group to the neighbouring N(7) (R) and N(2) (R) atoms were rigorously examined for each system. Both one- and two-dimensional potential energy surfaces have been calculated in the excited state to investigate the pathways. The R was found to be the dominant route with reaction barriers ranging from 26-40 kJmol for water clusters, and 14-26 kJmol for ammonia clusters. The barrier heights for ammonia clusters were found to be nearly half of the that observed for the water systems. The lengthening of the solvent chain up to two molecules resulted in a drastic decrease in the barrier heights for R. The barriers of the competing reaction channel R were found to be significantly higher (31-127 kJmol) but were observed to be decreasing with the lengthening of the solvent wire as in the R pathway. In both the reactions, the angle strain present in the transition state structures was dependent upon the solvent chain's length and was most likely the governing factor for the barrier heights in each solvent cluster. The results have also affirmed that the ammonia molecule is a better candidate for hydrogen transfer than water because of its higher gas-phase basicity. The results delineated from this investigation can pave the way to unravel the excited-state hydrogen atom transfer pathways in novel N-H bearing molecules.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.saa.2021.120386DOI Listing

Publication Analysis

Top Keywords

hydrogen atom
12
atom transfer
12
barrier heights
12
excited state
8
transfer pathways
8
ammonia clusters
8
lengthening solvent
8
clusters
5
solvent
5
hydrogen
4

Similar Publications

Carbon-carbon triple bond cleavage and reconstitution to achieve aryl amidation using nitrous acid esters.

Nat Commun

January 2025

School of Materials Science and Chemical Engineering, Institute of Drug Discovery Technology, Institute of Mass Spectrometry, Zhejiang Engineering Research Center of Advanced Mass Spectrometry and Clinical Application, Ningbo University, Ningbo, PR China.

C-C bond cleavage and recombination provide an efficient strategy for the modification and reconstruction of molecule structures. Herein, we present a method for achieving amidation of aryl C(sp)-H bond through the cleavage and recombination of C-C triple bond with the involvement of nitrous acid esters. This method marks the instance of precise and controlled stepwise cleavage of C-C triple bond, offering a fresh perspective for the cleavage of such bonds.

View Article and Find Full Text PDF

Lewis Base-Enhanced C-H Bond Functionalization Mediated by a Diiron Imido Complex.

Inorg Chem

January 2025

Department of Chemistry, Virginia Tech, Blacksburg, Virginia 24061, United States.

Herein, we investigate the effects of ligand design on the nuclearity and reactivity of metal-ligand multiply bonded (MLMB) complexes to access an exclusively bimetallic reaction pathway for C-H bond functionalization. To this end, the diiron alkoxide [Fe(Dbf)] () was treated with 3,5-bis(trifluoromethyl)phenyl azide to access the diiron imido complex [Fe(Dbf)(μ-NCHF)] () that promotes hydrogen atom abstraction (HAA) from a variety of C-H and O-H bond containing substrates. A diiron bis(amide) complex [Fe(Dbf)(μ-NHCHF)(NHCHF)] () was generated, prompting the isolation of the analogous bridging amide terminal alkoxide [Fe(Dbf)(μ-NHCHF)(OCH)] () and the asymmetric pyridine-bound diiron imido [Fe(Dbf)(μ-NCHF)(NCH)] ().

View Article and Find Full Text PDF

X-ray structural analysis of bis(guanidinium) disodium hypodiphosphate heptahydrate, (CHN)Na(PO)·7HO revealed close Na...

View Article and Find Full Text PDF

Electrocatalytic CO reduction into high-value multicarbon products offers a sustainable approach to closing the anthropogenic carbon cycle and contributing to carbon neutrality, particularly when renewable electricity is used to power the reaction. However, the lack of efficient and durable electrocatalysts with high selectivity for multicarbons severely hinders the practical application of this promising technology. Herein, a nanoporous defective AuCu single-atom alloy (De-AuCu SAA) catalyst is developed through facile low-temperature thermal reduction in hydrogen and a subsequent dealloying process, which shows high selectivity toward ethylene (CH), with a Faradaic efficiency of 52% at the current density of 252 mA cm under a potential of -1.

View Article and Find Full Text PDF

Predicting reaction barriers for arbitrary configurations based on only a limited set of density functional theory (DFT) calculations would render the design of catalysts or the simulation of reactions within complex materials highly efficient. We here propose Gaussian process regression (GPR) as a method of choice if DFT calculations are limited to hundreds or thousands of barrier calculations. For the case of hydrogen atom transfer in proteins, an important reaction in chemistry and biology, we obtain a mean absolute error of 3.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!