Promoting a pro-oxidant state in skeletal muscle: Potential dietary, environmental, and exercise interventions for enhancing endurance-training adaptations.

Free Radic Biol Med

Muscle Health Research Centre, School of Kinesiology and Health Sciences, Faculty of Health, York University, M3J 1P3, Toronto, Canada. Electronic address:

Published: November 2021

Accumulating evidence now shows that supplemental antioxidants including vitamin C, vitamin E and N-Acetylcysteine consumption can suppress adaptations to endurance-type exercise by attenuating reactive oxygen and nitrogen species (RONS) formation within skeletal muscle. This emerging evidence points to the importance of pro-oxidation as an important stimulus for endurance-training adaptations, including mitochondrial biogenesis, endogenous antioxidant production, insulin signalling, angiogenesis and growth factor signaling. Although sustained oxidative distress is associated with many chronic diseases, athletes have, on average, elevated levels of certain endogenous antioxidants to maintain redox homeostasis. As a result, trained athletes may have a better capacity to buffer oxidants during and after exercise, resulting in a reduced oxidative eustress stimulus for adaptations. Thus, higher levels of RONS input and exercise-induced oxidative stress may benefit athletes in the pursuit of continuous endurance training redox adaptations. This review addresses why athletes should be looking to enhance exercise-induced oxidative stress and how it can be accomplished. Methods covered include high-intensity interval training, hyperthermia and heat stress, dietary antioxidant restriction and modified antioxidant timing, dietary antioxidants and polyphenols as adjuncts to exercise, and vitamin C as a pro-oxidant.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.freeradbiomed.2021.09.014DOI Listing

Publication Analysis

Top Keywords

skeletal muscle
8
endurance-training adaptations
8
exercise-induced oxidative
8
oxidative stress
8
adaptations
5
promoting pro-oxidant
4
pro-oxidant state
4
state skeletal
4
muscle potential
4
potential dietary
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!