Carbon Ion Radiation Therapy: One Decade of Research and Clinical Experience at Heidelberg Ion Beam Therapy Center.

Int J Radiat Oncol Biol Phys

Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany; National Center for Radiation Oncology, Heidelberg Institute for Radiation Oncology, Heidelberg, Germany; National Center for Tumor Diseases, Heidelberg, Germany; Heidelberg Ion Beam Therapy Center, Heidelberg, Germany; Clinical Cooperation Unit, Radiation Oncology, German Cancer Research Center, Heidelberg, Germany; German Cancer Consortium, Partner Site Heidelberg, German Cancer Research Center, Heidelberg, Germany.

Published: November 2021

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ijrobp.2021.05.131DOI Listing

Publication Analysis

Top Keywords

carbon ion
4
ion radiation
4
radiation therapy
4
therapy decade
4
decade clinical
4
clinical experience
4
experience heidelberg
4
heidelberg ion
4
ion beam
4
beam therapy
4

Similar Publications

Smartphone-based non-invasive detection of salivary uric acid based on the fluorescence quenching of gleditsia sinensis carbon dots.

Mikrochim Acta

January 2025

Guizhou Province, Qianzhi Mingguang Soaphorn Rice Processing Base, Zhijin County, Maochang Town, Bijie CityBijie City, 552103, China.

A smartphone-based non-invasive method was developed for salivary uric acid detection using Gleditsia Sinensis carbon dots (GS-CDs). The GS-CDs synthesized by the one-pot hydrothermal method emitted blue fluorescence at a maximum excitation wavelength of 350 nm and had good fluorescence stability in the presence of different ions, while showing selectivity to uric acid solution. The ability of uric acid (UA) to quench the fluorescent substances present in the GS-CDs, was confirmed through HPLC-FLD and LC-MS, FTIR and XPS.

View Article and Find Full Text PDF

Cellulose Elementary Fibrils as Deagglomerated Binder for High-Mass-Loading Lithium Battery Electrodes.

Nanomicro Lett

January 2025

Department of Chemical and Biomolecular Engineering, Yonsei University, 50 Yonsei-Ro, Seodaemun-Gu, Seoul, 03722, Republic of Korea.

Amidst the ever-growing interest in high-mass-loading Li battery electrodes, a persistent challenge has been the insufficient continuity of their ion/electron conduction pathways. Here, we propose cellulose elementary fibrils (CEFs) as a class of deagglomerated binder for high-mass-loading electrodes. Derived from natural wood, CEF represents the most fundamental unit of cellulose with nanoscale diameter.

View Article and Find Full Text PDF

Water-soluble and biocompatible protein carbon dots (P-CDs) were simply prepared from egg white by a rapid one-step neutralization heat reaction. Unexpectedly, the thus-fabricated P-CDs could present excitation-dependent tunable fluorescence that could be quenched specifically by Fe and Fe ions with obvious color changes. A high-throughput fluorimetric platform was thereby developed by coating the P-CDs onto a capillary array for detection of total iron ions in fish blood samples, with a linear concentration range of 0.

View Article and Find Full Text PDF

Introduction: Phosphate (P) binders are among the most common medications prescribed to control P levels in patients with chronic kidney disease on dialysis. There is still a paucity of data on adherence to P binders with no comparison between dialysis modalities.

Methods: We accessed factors associated with P binder adherence among patients on dialysis in an academic hospital.

View Article and Find Full Text PDF

The SiO electrode interface is passivated with a SiO layer, which hinders the deposition of an inorganic solid electrolyte interphase (SEI) due to its high surface work function and low exchange current density of electrolyte decomposition. Consequently, a thermally vulnerable, organic-based SEI formed on the SiO electrode, leading to poor cycling performance at elevated temperatures. To address this issue, the SEI formation process is thermoelectrochemically activated.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!