Postnatal brain neural stem and progenitor cells (NSPCs) cluster in anatomically inaccessible stem cell niches, such as the subependymal zone (SEZ). Here, we describe a method for the isolation of NSPCs from live animals, which we term "milking." The intracerebroventricular injection of a release cocktail, containing neuraminidase, integrin-β1-blocking antibody, and fibroblast growth factor 2, induces the controlled flow of NSPCs in the cerebrospinal fluid, where they are collected via liquid biopsies. Isolated cells retain key in vivo self-renewal properties and their cell-type profile reflects the cell composition of their source area, while the function of the niche is sustained even 8 months post-milking. By changing the target area more caudally, we also isolate oligodendrocyte progenitor cells (OPCs) from the corpus callosum. This novel approach for sampling NSPCs and OPCs paves the way for performing longitudinal studies in experimental animals, for more in vivo relevant cell culture assays, and for future clinical neuro-regenerative applications.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8514974 | PMC |
http://dx.doi.org/10.1016/j.stemcr.2021.08.015 | DOI Listing |
Discov Oncol
January 2025
Department of General Surgery, The Second Affiliated Hospital of the Air Force Medical University, Xi'an, 710038, China.
A common digestive system cancer with a dismal prognosis and a high death rate globally is breast cancer (BRCA). BRCA recurrence, metastasis, and medication resistance are all significantly impacted by cancer stem cells (CSCs). However, the relationship between CSCs and the tumor microenvironment in BRCA individuals remains unknown, and this information is critically needed.
View Article and Find Full Text PDFCytotherapy
November 2024
Institute of Immunology and Immunotherapy, College of Medicine and Health, University of Birmingham, Birmingham, UK. Electronic address:
Background Aims: Extracellular vesicles (EVs) have gained traction as potential cell-free therapeutic candidates. Development of purification methods that are scalable and robust is a major focus of EV research. Yet there is still little in the literature that evaluates purification methods against potency of the EV product.
View Article and Find Full Text PDFAdv Sci (Weinh)
January 2025
Institute of Microsurgery on Extremities, Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China.
Chondrocyte senescence is an important pathogenic factor causing osteoarthritis (OA) progression through persistently producing pro-inflammatory factors. Mesenchymal stem cells-derived small extracellular vesicles (MSC-sEVs) have shown anti-inflammatory effects in OA models, while persistent existence of senescent chondrocytes still promotes cartilage destruction. Therefore, improving the targeted elimination ability on senescent chondrocytes is required to facilitate the translation of MSC-sEVs in OA treatment.
View Article and Find Full Text PDFOphthalmol Ther
January 2025
Corneoplastic Unit and Eye Bank, Queen Victoria Hospital NHS Foundation Trust, East Grinstead, UK.
Introduction: This study compared the clinical outcomes of allogenic cultured limbal epithelial transplantation (ACLET) and cultivated oral mucosal epithelial transplantation (COMET) in the management of limbal stem cell deficiency (LSCD).
Methods: Forty-one COMET procedures in 40 eyes and 69 ACLET procedures in 54 eyes were performed in the Corneoplastic Unit of Queen Victoria Hospital, East Grinstead. Data were examined for demographics, indications, ocular surface stability, absence of epithelial defect, ocular surface inflammation, visual outcomes, and intra- and postoperative complications.
Sci Rep
January 2025
Foot and Ankle Research and Innovation Lab (FARIL), Department of Orthopaedic Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
Tendon injuries present significant medical, social, and economic challenges globally. Despite advancements in tendon injury repair techniques, outcomes remain suboptimal due to inferior tissue quality and functionality. Tissue engineering offers a promising avenue for tendon regeneration, with biocompatible scaffolds playing a crucial role.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!