Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The production of value-added chemicals from CO electroreduction, using renewable energy, provides an appealing route to achieve the goal of carbon neutrality. Challenges remain in designing and understanding of high-performance catalysts with restructuring behavior under electrochemical conditions. Here, the intrinsic performance enhancement of an Au-complex derived carbon nanotube-supported Au nanoclusters catalyst was demonstrated for CO reduction. This catalyst exhibited impressive activity for yielding CO in both H-cell and flow cell reactors. Experimental results revealed that the synthesis procedure via metal complex reconstructing on proper support induced charge transfer between Au nanoclusters and carbon nanotubes, forming a rather electron-rich state for Au active sites, which greatly contributed to the CO activation pathway.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/cssc.202101972 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!