Dysferlinopathy is one of the most common subgroup of autosomal recessive limb-girdle muscular dystrophies that is caused by mutations in DYSF gene. However, there is currently no worldwide comprehensive genetic analysis of DYSF variants. Through a national multicenter collaborative effort in China, we identified 222 DYSF variants with 40 novel variants from 245 patients. We then integrated DYSF variants from disease-related genetic databases including LOVD (n = 1020) and Clinvar (n = 1179), to depict the global landscape of disease-related DYSF variants. Normal-population-derived DSYF variants from gnomAD (n = 4318) and ChinaMAP (n = 13,330) were also analyzed in comparison. In Chinese patients, gender instead of genotype showed influence on the onset age of dysferlinopathy, with males showing an earlier age of onset. After integrative analysis, we identified two hotspot DYSF mutations, c.2997G>T in world patients and c.1375dup in Chinese patients, respectively. Both the pathogenic and likely pathogenic variants scattered on the whole gene length of DYSF. However, three specific domains (C2F-C2G-TM, DysF, and C2B-Ferl-C2C) contained variants at higher frequencies than reported in both the databases and Chinese patients. This study comprehensively collected available DYSF variant data, which may pave way for genetic counselling and future clinical trial design for gene therapies in dysferlinopathy.

Download full-text PDF

Source
http://dx.doi.org/10.1002/humu.24284DOI Listing

Publication Analysis

Top Keywords

dysf variants
16
chinese patients
12
dysf
10
dysf mutations
8
variants
8
patients
5
molecular landscape
4
landscape dysf
4
dysferlinopathy
4
mutations dysferlinopathy
4

Similar Publications

Chronic pain as a presenting feature of dysferlinopathy.

Neuromuscul Disord

December 2024

Service de Neuromyologie, Centre de référence des maladies neuromusculaires Nord/Est/Ile de France Institut de Myologie, Sorbonne Université, APHP, Paris, France. Electronic address:

Dysferlinopathies, caused by mutations in the dysferlin gene (DYSF) encoding the dysferlin protein, are a clinically heterogeneous group of autosomal recessive muscular dystrophies whose phenotypic spectrum is still evolving. Here we described a patient reporting diffuse muscular pain non related to physical exercise, mimicking fibromyalgic syndrome. Electroneuromyography was normal.

View Article and Find Full Text PDF

Clinical features, mutation spectrum and factors related to reaching molecular diagnosis in a cohort of patients with distal myopathies.

J Neurol

January 2025

Neuromuscular Diseases Unit, Neurology Department, Hospital Universitari I Politècnic La Fe, Neuromuscular Reference Centre, ERN-EURO-NMD, Avenida de Fernando Abril Martorell 106, 46026, Valencia, Spain.

Background: Distal myopathies (MPDs) are heterogeneous diseases of complex diagnosis whose prevalence and distribution in specific populations are unknown.

Methods: Demographic, clinical, genetic, neurophysiological, histopathological and muscle imaging characteristics of a MPDs cohort from a neuromuscular reference center were analyzed to study their epidemiology, features, genetic distribution and factors related to diagnosis.

Results: The series included 219 patients (61% were men, 94% Spanish and 41% sporadic cases).

View Article and Find Full Text PDF

Asymptomatic HyperCKemia in the Pediatric Population: A Prospective Study Utilizing Next-Generation Sequencing and Ancillary Tests.

Neurology

January 2025

From the U763 (P.M., N.M., I.A., T.S., J.J.V.), Centro de Investigación Biomédica en Red Enfermedades Raras (CIBERER), Madrid; Neuromuscular Research Group (P.M., I.P.C., N.M., I.A., L.F., R.V., T.S., J.J.V.), IIS La Fe; Neuromuscular Referral Center ERN-EURO-NMD (I.P.C.), Neuropediatric Department, UIP La Fe Hospital; Neuromuscular Referral Center ERN-EURO-NMD (N.M., T.S.), Neurology Department, UIP La Fe Hospital, Valencia; and Department of Medicine (N.M., T.S., J.J.V.), Universitat de Valencia, Spain.

Article Synopsis
  • - The study focuses on diagnosing asymptomatic hyperCKemia in pediatric patients using next-generation sequencing (NGS) and other diagnostic tools, as genetic myopathies are often linked to elevated creatine kinase levels.
  • - Conducted on 65 patients, the study found that NGS successfully diagnosed 55% of cases, with seven specific genes frequently showing pathogenic variants, while muscle biopsies were crucial for identifying myopathologic features.
  • - The research highlighted the effectiveness of EMG in revealing myopathic features in 48% of cases, although some diagnostic challenges remained, with 14% and 29% of diagnoses being inconclusive.
View Article and Find Full Text PDF

We report a case of -associated autosomal recessive spinocerebellar ataxia (SCAR8) presenting with a complex multisystemic phenotype, including highly elevated creatine kinase levels and lower-leg muscle atrophy. In addition to identifying two novel pathogenic variants in the gene, whole-exome sequencing revealed three variants of uncertain significance in the gene. Electromyography and muscle magnetic resonance imaging indicated a neurogenic pattern of muscle involvement.

View Article and Find Full Text PDF
Article Synopsis
  • Miyoshi myopathy (MM) is a rare genetic disorder due to mutations in the dysferlin gene, linked to muscle degeneration and recognized as the same disease as Lower Girdle Muscular Dystrophy R2 (LGMD2B).
  • A 44-year-old male patient started experiencing symptoms at 19, including difficulties with stairs and toe-standing, leading to observable muscle atrophy and walking issues over the years.
  • The diagnosis was confirmed through genetic testing, revealing a mutation in the DYSF gene, and highlights the critical role of genetic diagnostics and the need for further research in muscular dystrophies.*
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!