The electron spin relaxation processes are complicated in semiconductor quantum dots. Different spin relaxation mechanisms may result in an increased or decreased spin relaxation rate with the size. The information on size-dependent spin dynamics helps to clarify and better understand the underlying spin relaxation processes. We investigate the size dependence of the electron spin dynamics in negatively photocharged CdSe and CdS colloidal quantum dots by time-resolved ellipticity spectroscopy. It is revealed that the electron spin dephasings of photodoped electron in zero or weak magnetic fields are dominated by the electron-nuclear hyperfine interaction for all measured samples. The hyperfine-induced electron spin dephasing time is ∼1-2 ns at room temperature and decreases with decreasing the size . In addition to a size-dependent dephasing time that is directly proportional to , our measurements also show a size-independent time component, likely due to the laser-induced nuclear spin ordering.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.jpclett.1c02754 | DOI Listing |
Phys Rev Lett
December 2024
Flatiron Institute, Center for Computational Quantum Physics, New York, New York 10010, USA.
The two-dimensional electron gas (2DEG) is a fundamental model, which is drawing increasing interest because of recent advances in experimental and theoretical studies of 2D materials. Current understanding of the ground state of the 2DEG relies on quantum Monte Carlo calculations, based on variational comparisons of different Ansätze for different phases. We use a single variational ansatz, a general backflow-type wave function using a message-passing neural quantum state architecture, for a unified description across the entire density range.
View Article and Find Full Text PDFPhys Rev Lett
December 2024
Johns Hopkins University, Institute for Quantum Matter and Department of Physics and Astronomy, Baltimore, Maryland 21218, USA.
The tetragonal heavy-fermion superconductor CeRh_{2}As_{2} (T_{c}=0.3 K) exhibits an exceptionally high critical field of 14 T for B∥c. It undergoes a field-driven first-order phase transition between superconducting states, potentially transitioning from spin-singlet to spin-triplet superconductivity.
View Article and Find Full Text PDFPhys Rev Lett
December 2024
Instituto de Ciencia de Materiales de Madrid, CSIC, E-28049 Madrid, Spain.
We address the precise determination of the phase diagram of magic angle twisted bilayer graphene under hydrostatic pressure within a self-consistent Hartree-Fock method in real space, including all the remote bands of the system. We further present a novel algorithm that maps the full real-space density matrix to a 4×4 density matrix based on a SU(4) symmetry of sublattice and valley degrees of freedom. We find a quantum critical point between a nematic and a Kekulé phase, and show also that our microscopic approach displays a strong particle-hole asymmetry in the weak coupling regime.
View Article and Find Full Text PDFPhys Rev Lett
December 2024
Brookhaven National Laboratory, Condensed Matter Physics and Materials Science Division, Upton, New York 11973, USA.
We present a protocol for detecting multipartite entanglement in itinerant many-body electronic systems using single-particle Green's functions. To achieve this, we first establish a connection between the quantum Fisher information and single-particle Green's functions by constructing a set of witness operators built out of single electron creation and destruction operators in a doubled system. This set of witness operators is indexed by a momentum k.
View Article and Find Full Text PDFPhys Rev Lett
December 2024
Duke University, Department of Physics, Durham, North Carolina 27708, USA.
The emergence of a quantum spin liquid (QSL), a state of matter that can result when electron spins are highly correlated but do not become ordered, has been the subject of a considerable body of research in condensed matter physics [1,2]. Spin liquid states have been proposed as hosts for high-temperature superconductivity [3] and can host topological properties with potential applications in quantum information science [4]. The excitations of most quantum spin liquids are not conventional spin waves but rather quasiparticles known as spinons, whose existence is well established experimentally only in one-dimensional systems; the unambiguous experimental realization of QSL behavior in higher dimensions remains challenging.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!