The A-kinase anchoring protein 150 (AKAP150) organizes kinases and phosphatases to regulate AMPA receptors (AMPARs) that are pivotal for synaptic plasticity. AKAP150 itself undergoes S-palmitoylation. However, the roles of AKAP150 and its palmitoylation in spinal nociceptive processing remain unknown. In this study, we found that intraplantar injection of complete Freund's adjuvant (CFA) significantly increased the synaptic expression of AKAP150 and caused a reorganization of AKAP150 signaling complex in spinal dorsal horn. Knockdown of AKAP150 or interruption of its interactions with kinases effectively suppressed the CFA-induced synaptic expression of GluA1 subunit of AMPARs. Our data also showed that an upregulation of AKAP150 palmitoylation was involved in the synaptic redistribution of AKAP150. Inhibition of AKAP150 palmitoylation by expression of palmitoylation-defective mutant AKAP150 (C36, 123S) effectively repressed the CFA-induced phosphorylation and synaptic expression of GluA1 subunit, meanwhile, attenuated the development of mechanical allodynia and thermal hyperalgesia. Furthermore, we found that an increased expression of palmitoyl acyltransferase ZDHHC2 contributed to the upregulation of AKAP150 palmitoylation and GluA1 accumulation in inflamed mouse. These data indicated that AKAP150 and its palmitoylation were involved in AMPA receptor-dependent modification of nociceptive transmission, and the manipulations of AKAP150 signaling complex and palmitoylation might serve as potential therapeutic strategies for persistent pain after inflammation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s12035-021-02570-z | DOI Listing |
Br J Pharmacol
July 2024
Department of Pharmacology, School of Pharmacy, Fujian Medical University, Fuzhou, China.
iScience
September 2023
Department of Pharmacology, School of Pharmacy, Fujian Medical University, Fuzhou 350122, China.
Front Synaptic Neurosci
September 2022
Department of Pharmacology, University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, CO, United States.
A-kinase anchoring protein 79-human/150-rodent (AKAP79/150) organizes signaling proteins to control synaptic plasticity. AKAP79/150 associates with the plasma membrane and endosomes through its N-terminal domain that contains three polybasic regions and two Cys residues that are reversibly palmitoylated. Mutations abolishing palmitoylation (AKAP79/150 CS) reduce its endosomal localization and association with the postsynaptic density (PSD).
View Article and Find Full Text PDFMol Neurobiol
December 2021
Department of Molecular Pharmacology, School of Pharmacy, Lanzhou University, Lanzhou, 730000, Gansu, People's Republic of China.
Cell Rep
October 2018
Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO 80045, USA; Advanced Light Microscopy Core, University of Colorado School of Medicine, Aurora, CO 80045, USA. Electronic address:
Ca-permeable AMPA-type glutamate receptors (CP-AMPARs) containing GluA1 but lacking GluA2 subunits contribute to multiple forms of synaptic plasticity, including long-term potentiation (LTP), but mechanisms regulating CP-AMPARs are poorly understood. A-kinase anchoring protein (AKAP) 150 scaffolds kinases and phosphatases to regulate GluA1 phosphorylation and trafficking, and trafficking of AKAP150 itself is modulated by palmitoylation on two Cys residues. Here, we developed a palmitoylation-deficient knockin mouse to show that AKAP150 palmitoylation regulates CP-AMPAR incorporation at hippocampal synapses.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!