Prospective adverse event risk evaluation in clinical trials.

Health Care Manag Sci

Department of Industrial, Manufacturing and Systems Engineering, Texas Tech University, Lubbock, TX, USA.

Published: March 2022

Proactive and objective regulatory risk management of ongoing clinical trials is limited, especially when it involves the safety of the trial. We seek to prospectively evaluate the risk of facing adverse outcomes from standardized and routinely collected protocol data. We conducted a retrospective cohort study of 2860 Phase 2 and Phase 3 trials that were started and completed between 1993 and 2017 and documented in ClinicalTrials.gov. Adverse outcomes considered in our work include Serious or Non-Serious as per the ClinicalTrials.gov definition. Random-forest-based prediction models were created to determine a trial's risk of adverse outcomes based on protocol data that is available before the start of a trial enrollment. A trial's risk is defined by dichotomic (classification) and continuous (log-odds) risk scores. The classification-based prediction models had an area under the curve (AUC) ranging from 0.865 to 0.971 and the continuous-score based models indicate a rank correlation of 0.6-0.66 (with p-values < 0.001), thereby demonstrating improved identification of risk of adverse outcomes. Whereas related frameworks highlight the prediction benefits of incorporating data that is highly context-specific, our results indicate that Adverse Event (AE) risks can be reliably predicted through a framework of mild data requirements. We propose three potential applications in leading regulatory remits, highlighting opportunities to support regulatory oversight and informed consent decisions.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s10729-021-09584-yDOI Listing

Publication Analysis

Top Keywords

adverse outcomes
12
clinical trials
8
protocol data
8
prediction models
8
risk
5
prospective adverse
4
adverse event
4
event risk
4
risk evaluation
4
evaluation clinical
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!