Silanization processes with perfluoroalkyl silanes have been demonstrated to be effective in developing advanced materials with many functional properties, including hydrophobicity, water repellency, and self-cleaning properties. However, practical industrial applications of perfluoroalkyl silanes are limited by their extremely high cost. On the basis of our recent work on photoredox catalysis for amidation with perfluoroalkyl iodides, its application for surface chemical modification on filter paper, as an illustrative example, has been developed and evaluated. Before photocatalytic amidation, the surface is functionalized with amine functional groups by silanization with 3-(trimethoxysilyl)propylamine. All chemically modified surfaces have been fully characterized by attenuated total reflection infrared (ATR-IR), X-ray photoelectron spectroscopy (XPS), scanning electron microscopy with energy-dispersive spectroscopy (SEM-EDS), and three-dimensional (3D) profiling to confirm the successful silanization and photocatalytic amidation. After surface modification of the filter papers with perfluoroalkanamide, they show high water repellency and hydrophobicity with contact angles over 120°. These filter papers possess high wetting selectivity, which can be used to effectively separate the organic and aqueous biphasic mixtures. The perfluoroalkanamide-modified filter papers can be used for separating organic/aqueous biphasic mixtures over many cycles without lowering the separating efficiency, indicating their reusability and excellent durability.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.langmuir.1c01926 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!