A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Western Diet Changes Gut Microbiota and Ameliorates Liver Injury in a Mouse Model with Human-Like Bile Acid Composition. | LitMetric

Western-style high-fat/high-sucrose diet (HFHSD) changes gut microbiota and bile acid (BA) profiles. Because gut microbiota and BAs could influence each other, the mechanism of changes in both by HFHSD is complicated and remains unclear. We first aimed to clarify the roles of BAs in the HFHSD-induced change of gut microbiota. Then, we studied the effects of the changed gut microbiota on BA composition and liver function. Male wild-type (WT) and human-like Cyp2a12/Cyp2c70 double knockout (DKO) mice derived from C57BL/6J were fed with normal chow or HFHSD for 4 weeks. Gut microbiomes were analyzed by fecal 16S ribosomal RNA gene sequencing, and BA composition was determined by liquid chromatography-tandem mass spectrometry. The DKO mice exhibited significantly reduced fecal BA concentration, lacked muricholic acids, and increased proportions of chenodeoxycholic and lithocholic acids. Despite the marked difference in the fecal BA composition, the profiles of gut microbiota in the two mouse models were quite similar. An HFHSD resulted in a significant increase in the BA pool and fecal BA excretion in WT mice but not in DKO mice. However, microbial composition in the two mouse models was drastically but similarly changed by the HFHSD. In addition, the HFHSD-induced change of gut microbiota inhibited BA deconjugation and 7α-dehydroxylation in both types of mice, which improved chronic liver injury observed in DKO mice. Conclusion: The HFHSD itself causes the change of gut microbiota due to HFHSD, and the altered composition or concentration of BAs by HFHSD is not the primary factor. On the contrary, the gut microbiota formed by HFHSD affects BA composition and ameliorates liver injury in the mouse model with human-like hydrophobic BA composition.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8631099PMC
http://dx.doi.org/10.1002/hep4.1778DOI Listing

Publication Analysis

Top Keywords

gut microbiota
36
dko mice
16
liver injury
12
change gut
12
gut
10
microbiota
9
hfhsd
9
changes gut
8
ameliorates liver
8
injury mouse
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!