Scope: Intestinal commensal microbiota interactions play critical roles in the inflammatory bowel disease (IBD) development. Candida albicans (CA) can aggravate intestinal inflammation; however, whether Faecalibacterium prausnitzii (FP) can antagonize CA is unknown.
Methods And Results: CA are co-cultured with bacteria (FP and Escherichia coli (EC)), bacterial supernatant, and bacterial medium, respectively. Then, the CA hyphae-specific genes' expression and CA cells' morphology are investigated. The Nod-like receptor pyrin-containing protein 6 (NLRP6) inflammasome, inflammatory cytokines, and antimicrobial peptides (AMPs) production are evaluated in intestinal epithelial cells pre-treated with bacteria, bacterial med, and bacterial supernatant and exposed without or with CA. Both bacteria significantly prohibit CA numbers, while only FP and FP supernatant prohibit the transformation and virulence factors (extracellular phospholipase, secreted aspartyl proteinase, and hemolysin) secretion of CA in a co-culture system compared with media controls. Further, FP and FP supernatant promote the production of the NLRP6 inflammasome, interleukin (IL)-1β, IL-18, and antibacterial peptides (β-defensin (BD)-2 and BD-3) and inhibit in vitro and in vivo CA growth and pathogenicity, and alleviate DSS-colitis in mice, while EC do not show the similar effect.
Conclusion: FP improve intestinal inflammation by inhibiting CA reproduction, colonization, and pathogenicity and inducing AMP secretion in the gut. This study uncovers new relationships between intestinal microbes and fungi in IBD patients.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/mnfr.202100433 | DOI Listing |
Nutr Rev
December 2024
Integrative Physiology and Pharmacology Unit, Institute of Biomedicine, Faculty of Medicine, University of Turku, 20520 Turku, Finland.
Diet may influence the gut microbiota and subsequently affect the host's health. Recent developments in methods analyzing the composition and function of the gut microbiota allow a deeper understanding of diet-gut microbiota relationships. A state-of-the-art methodology, shotgun metagenomics sequencing, offers a higher taxonomic resolution of the gut microbiota at the bacterial species and strain levels, and more accurate information regarding the functional potential of gut microbiota.
View Article and Find Full Text PDFCell Chem Biol
December 2024
Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA 90095, USA; UCLA Goodman-Luskin Microbiome Center, Vatche and Tamar Manoukian Division of Digestive Diseases, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA.
The molecular underpinnings behind the diet-microbiome-host health relationship are largely undescribed. In a recent issue of Science, Cheng et al. uncovered one piece of the puzzle by describing a novel fatty acid amide hydrolase (FAAH) derived from a Faecalibacterium prausnitzii strain that correlated with improved malnutrition recovery.
View Article and Find Full Text PDFGut
December 2024
Sorbonne Université, INSERM UMRS-938, Centre de Recherche Saint-Antoine, CRSA, AP-HP, Paris, France
Animals (Basel)
November 2024
State Key Laboratory of Swine and Poultry Breeding Industry, Guangdong Key Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China.
Tilmicosin, an antibiotic widely used in animal husbandry to prevent and treat bacterial infections, raises concerns due to its residual accumulation, which impacts both animal health and food safety. In this study, we conducted a comprehensive analysis of tilmicosin clearance patterns in different tissues, assessed physiological impacts through blood biochemistry, and investigated changes in gut microbial composition with 16S rRNA sequencing of the tilmicosin-treated Silkie chickens. Initially, we observed rapid peaks in tilmicosin residues in all tissues within 1 day after treatment, but complete metabolism took longer, extending beyond 9 days.
View Article and Find Full Text PDFAnimals (Basel)
November 2024
Nutrition and Welfare Service, Department of Animal and Food Science, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, 08193 Barcelona, Spain.
This study evaluated the effects of two synbiotic strategies on the intestinal microbiota and immune response in Beagle dogs. Twelve dogs were subjected to a crossover design with three diets: a control diet (CON), a diet supplemented with fiber and DSM 15544 (SYN), and the SYN diet with added porcine plasma (SYN+). Over three periods of seven weeks, fecal samples were analyzed for digestibility, short-chain fatty acids (SCFA), fecal markers, and microbiome composition, while blood samples were assessed for biochemical parameters, leucocytic counts including CD4/CD8 lymphocyte populations, and phagocytic activity.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!