Diffusion tensor tractography characteristics of axonal injury in concussion/mild traumatic brain injury.

Neural Regen Res

Department of Physical Medicine and Rehabilitation, College of Medicine, Yeungnam University, Daegu, Republic of Korea.

Published: May 2022

The main advantage of diffusion tensor tractography is that it allows the entire neural tract to be evaluated. In addition, configurational analysis of reconstructed neural tracts can indicate abnormalities such as tearing, narrowing, or discontinuations, which have been used to identify axonal injury of neural tracts in concussion patients. This review focuses on the characteristic features of axonal injury in concussion or mild traumatic brain injury (mTBI) patients through the use of diffusion tensor tractography. Axonal injury in concussion (mTBI) patients is characterized by their occurrence in long neural tracts and multiple injuries, and these characteristics are common in patients with diffuse axonal injury and in concussion (mTBI) patients with axonal injury. However, the discontinuation of the corticospinal tract is mostly observed in diffuse axonal injury, and partial tearing and narrowing in the subcortical white matter are frequently observed in concussion (mTBI) patients with axonal injury. This difference appears to be attributed to the observation that axonal injury in concussion (mTBI) patients is the result of weaker forces than those producing diffuse axonal injuries. In addition, regarding the fornix, in diffuse axonal injury, discontinuation of the fornical crus has been frequently reported, but in concussion (mTBI) patients, many collateral branches form in the fornix in addition to these findings in many case studies. It is presumed that the impact on the brain in TBI is relatively weaker than that in diffuse axonal injury, and that the formation of collateral branches occurs during the fornix recovery process. Although the occurrence of axonal injury in multiple areas of the brain is an important feature of diffuse axonal injury, case studies in concussion (mTBI) have shown that axonal injury occurs in multiple neural tracts. Because axonal injury lesions in mTBI patients may persist for approximately 10 years after injury onset, the characteristics of axonal injury in concussion (mTBI) patients, which are reviewed and categorized in this review, are expected to serve as useful supplementary information in the diagnosis of axonal injury in concussion (mTBI) patients.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8552846PMC
http://dx.doi.org/10.4103/1673-5374.324825DOI Listing

Publication Analysis

Top Keywords

axonal injury
68
mtbi patients
36
concussion mtbi
32
injury concussion
24
diffuse axonal
24
injury
20
axonal
18
neural tracts
16
diffusion tensor
12
tensor tractography
12

Similar Publications

The purpose of this study was to investigate the effects of weight- and non-weight-bearing exercises on the Basso-Beattie-Bresnahan (BBB) locomotor rating scale, corticospinal axon regrowth and regeneration-related proteins following spinal cord injury (SCI). Twenty-four male Sprague-Dawley rats were randomly divided into four groups: control group (n=6), SCI+sedentary group (SED, n=6), SCI+treadmill exercise group (TREAD, n=6), and SCI+swimming exercise group (SWIM, n=6). All rats in the SCI group were given the rest for 2 weeks after SCI, and then they were allowed to engage in low-intensity exercise for 6 weeks on treadmill device.

View Article and Find Full Text PDF

After a peripheral nerve injury, Schwann cells (SCs), the myelinating glia of the peripheral nervous system, convert into repair cells that foster axonal regrowth, and then remyelinate or re-ensheath regenerated axons, thereby ensuring functional recovery. The efficiency of this mechanism depends however on the time needed for axons to regrow. Here, we show that ablation of histone deacetylase 8 (HDAC8) in SCs accelerates the regrowth of sensory axons and sensory function recovery.

View Article and Find Full Text PDF

Automated Quantification of Axonal and Myelin Changes in Contusion, Dislocation, and Distraction Spinal Cord Injuries: Insights into Targeted Remyelination and Axonal Regeneration.

Brain Res Bull

January 2025

Key Laboratory of Biomechanics and Mechanobiology, Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University - Yifu Science Hall, 37 Xueyuan Road, Haidian, Beijing, 100191, China. Electronic address:

Quantifying axons and myelin is essential for understanding spinal cord injury (SCI) mechanisms and developing targeted therapies. This study proposes and validates an automated method to measure axons and myelin, applied to compare contusion, dislocation, and distraction SCIs in a rat model. Spinal cords were processed and stained for neurofilament, tubulin, and myelin basic protein, with histology images segmented into dorsal, lateral, and ventral white matter regions.

View Article and Find Full Text PDF

The potential role of SCF combined with DPCs in facial nerve repair.

J Mol Histol

January 2025

School of Stomatology, The First Affiliated Hospital of Harbin Medical University, Harbin Medical University, Harbin, 150000, China.

Facial nerve injuries lead to significant functional impairments and psychological distress for affected patients. Effective repair of these injuries remains a challenge. For longer nerve gaps, the regeneration outcomes after nerve grafting remain suboptimal due to limited sources and postoperative immune responses.

View Article and Find Full Text PDF

Peripheral nerve injury (PNI) is characterized by a loss of cellular and axonal integrity, often leading to limited functional recovery and pain. Many PNIs are not amenable to repair with traditional techniques; however, cell therapies, particularly Schwann cells (SCs), offer the promise of neural tissue replacement and functional improvement. Exosomes, which carry cellular signaling molecules, can be secreted by SCs and have shown promise in PNI.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!