A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Inter-rater and inter-session reliability of lumbar paraspinal muscle composition in a mobile MRI device. | LitMetric

AI Article Synopsis

  • The study aimed to evaluate the reliability of measuring transverse relaxation times (T2 times) of paraspinal muscles via MRI between different observers and within the same observer over various time points.
  • 14 participants underwent MRI scans on different days, and the T2 times were calculated for two muscle groups at the lumbar level.
  • Results showed high reliability with low variability and systematic bias, indicating that the methods used are trustworthy for future research on muscle response to exercises.
  • Reliable assessment of T2 times supports its application in scientific studies examining the effects of intense eccentric workouts.

Article Abstract

Objective: To assess the reliability of measurements of paraspinal muscle transverse relaxation times (T2 times) between two observers and within one observer on different time points.

Methods: 14 participants (9f/5m, 33 ± 5 years, 176 ± 10 cm, 73 ± 12 kg) underwent 2 consecutive MRI scans (M1,M2) on the same day, followed by 1 MRI scan 13-14 days later (M3) in a mobile 1.5 Tesla MRI. T2 times were calculated in weighted turbo spin-echo-sequences at the spinal level of the third lumbar vertebrae (11 slices, 2 mm slice thickness, 1 mm interslice gap, echo times: 20, 40, 60, 80, 100 ms) for M. erector spinae (ES) and M. multifidius (MF). The following reliability parameter were calculated for the agreement of T2 times between two different investigators (OBS1 & OBS2) on the same MRI (inter-rater reliability, IR) and by one investigator between different MRI of the same participant (intersession variability, IS): Test-Retest Variability (TRV, Differences/Mean*100); Coefficient of Variation (CV, Standard deviation/Mean*100); Bland-Altman Analysis (systematic bias = Mean of the Differences; Upper/Lower Limits of Agreement = Bias+/-1.96*SD); Intraclass Correlation Coefficient 3.1 (ICC) with absolute agreement, as well as its 95% confidence interval.

Results: Mean TRV for IR was 2.6% for ES and 4.2% for MF. Mean TRV for IS was 3.5% (ES) and 5.1% (MF). Mean CV for IR was 1.9 (ES) and 3.0 (MF). Mean CV for IS was 2.5% (ES) and 3.6% (MF). A systematic bias of 1.3 ms (ES) and 2.1 ms (MF) were detected for IR and a systematic bias of 0.4 ms (ES) and 0.07 ms (MF) for IS. ICC for IR was 0.94 (ES) and 0.87 (MF). ICC for IS was 0.88 (ES) and 0.82 (MF).

Conclusion: Reliable assessment of paraspinal muscle T2 time justifies its use for scientific purposes. The applied technique could be recommended to use for future studies that aim to assess changes of T2 times, after an intense bout of eccentric exercises.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8553209PMC
http://dx.doi.org/10.1259/bjr.20210141DOI Listing

Publication Analysis

Top Keywords

paraspinal muscle
12
systematic bias
12
mri
6
times
6
inter-rater inter-session
4
reliability
4
inter-session reliability
4
reliability lumbar
4
lumbar paraspinal
4
muscle composition
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!