Catecholaminergic polymorphic ventricular tachycardia type 1 (CPVT1) is an inherited arrhythmogenic disorder caused by missense mutations in the cardiac ryanodine receptors (RyR2), that result in increased β-adrenoceptor stimulation-induced diastolic Ca leak. We have previously shown that exercise training prevents arrhythmias in CPVT1, potentially by reducing the oxidation of Ca /calmodulin-dependent protein kinase type II (CaMKII). Therefore, we tested whether an oxidation-resistant form of CaMKII protects mice carrying the CPVT1-causative mutation RyR2-R2474S (RyR2-RS) against arrhythmias. Antioxidant treatment (N-acetyl-L-cysteine) reduced the frequency of β-adrenoceptor stimulation-induced arrhythmogenic Ca waves in isolated cardiomyocytes from RyR2-RS mice. To test whether the prevention of CaMKII oxidation exerts an antiarrhythmic effect, mice expressing the oxidation-resistant CaMKII-MM281/282VV variant (MMVV) were crossed with RyR2-RS mice to create a double transgenic model (RyR2-RS/MMVV). Wild-type mice served as controls. Telemetric ECG surveillance revealed an increased incidence of ventricular tachycardia and an increased arrhythmia score in both RyR2-RS and RyR2-RS/MMVV compared to wild-type mice, both following a β-adrenoceptor challenge (isoprenaline i.p.), and following treadmill exercise combined with a β-adrenoceptor challenge. There were no differences in the incidence of arrhythmias between RyR2-RS and RyR2-RS/MMVV mice. Furthermore, no differences were observed in β-adrenoceptor stimulation-induced Ca waves in RyR2-RS/MMVV compared to RyR2-RS. In conclusion, antioxidant treatment reduces β-adrenoceptor stimulation-induced Ca waves in RyR2-RS cardiomyocytes. However, oxidation-resistant CaMKII-MM281/282VV does not protect RyR2-RS mice from β-adrenoceptor stimulation-induced Ca waves or arrhythmias. Hence, alternative oxidation-sensitive targets need to be considered to explain the beneficial effect of antioxidant treatment on Ca waves in cardiomyocytes from RyR2-RS mice.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8461029 | PMC |
http://dx.doi.org/10.14814/phy2.15030 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!