The novel coronavirus disease of 2019 (COVID-19) pandemic has caused an exceptional drift of production, utilization, and disposal of personal protective equipment (PPE) and different microplastic objects for safety against the virus. Hence, we reviewed related literature on severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) RNA detected from household, biomedical waste, and sewage to identify possible health risks and status of existing laws, regulations, and policies regarding waste disposal in South Asian (SA) countries. The SARS-CoV-2 RNA was detected in sewage and wastewater samples of Nepal, India, Pakistan, and Bangladesh. Besides, this review reiterates the enormous amounts of PPE and other single-use plastic wastes generated from healthcare facilities and households in the SA region with inappropriate disposal, landfilling, and/or incineration techniques wind-up polluting the environment. Consequently, the Delta variant (B.1.617.2) of SARS-CoV-2 has been detected in sewer treatment plant in India. Moreover, the overuse of non-biodegradable plastics during the pandemic is deteriorating plastic pollution condition and causes a substantial health risk to the terrestrial and aquatic ecosystems. We recommend making necessary adjustments, adopting measures and strategies, and enforcement of the existing biomedical waste management and sanitation-related policy in SA countries. We propose to adopt the knowledge gaps to improve COVID-19-associated waste management and legislation to prevent further environmental pollution. Besides, the citizens should follow proper disposal procedures of COVID-19 waste to control the environmental pollution.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8459815PMC
http://dx.doi.org/10.1007/s11356-021-16396-8DOI Listing

Publication Analysis

Top Keywords

waste management
12
sars-cov-2 rna
8
rna detected
8
biomedical waste
8
environmental pollution
8
waste
6
escalating sars-cov-2
4
sars-cov-2 circulation
4
circulation environment
4
environment tracking
4

Similar Publications

Valorization potential of coffee capsule waste: an updated bibliometric review.

Environ Sci Pollut Res Int

January 2025

Postgraduate Program in Materials Science and Engineering, Darcy Ribeiro Northern Fluminense State University, Campos Dos Goytacazes City, RJ, 28013-602, Brazil.

In recent years, coffee capsule waste has been generated on an increasingly large scale worldwide, but disposing of it in an environmentally sustainable and economical manner still poses major challenges. This work maps the original scientific production focused on the valorization of coffee capsule waste through a bibliometric review based on scientific articles published in the last 10 years (from 2014 to 2024) in the Scopus database. The review identified different ways of valuing coffee capsule waste, including the development of composite materials, composting, energy production, jewelry and decorative items, and the construction of supercapacitors and sensors.

View Article and Find Full Text PDF

Advanced oxidation technology plays an important role in wastewater treatment due to active substances with high redox potential. Biochar is a versatile and functional biomass material. It can be used for resource management of various waste biomasses.

View Article and Find Full Text PDF

Study of hydrophobic cemented paste backfill (H-CPB) to prevent sulphate attack.

Heliyon

November 2024

Department of Mining Engineering, Faculty of Engineering, Hadimkoy Campus, Istanbul University - Cerrahpasa, 34500, Istanbul, Turkiye.

One of the challenges encountered in mining is acid mine drainage (AMD) in sulphurous ores in response to rainfall and groundwater. CPB one of the most prevalent waste management systems addresses this issue today. Nevertheless, in the long term, the concretion in CPB may become ineffective because of external factors, such as groundwater and rainfall.

View Article and Find Full Text PDF

Microplastics (MPs) are emerging pollutants that pose significant risks to ecosystems due to their inherent toxicity, capacity to accumulate various pollutants, and potential for synergistic impacts. Given these concerns, the focus of this research is on the critical need for effective MPs removal from aquatic environments. Using BBD method, this study aimed to identify the key parameters affecting the removal of MPs by algal biomass from aqueous solutions.

View Article and Find Full Text PDF

We conducted surveys of Mediterranean beaches in Egypt, Morocco, and Tunisia including 37 macro-litter (> 25 mm) and 41 meso-litter (5-25 mm) assessments. Our study identified key litter items and assessed pollution sources on urban, semi-urban, tourist, and semi-rural beaches. Macro-litter concentration averaged 5032 ± 4919 pieces per 100 m or 1.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!