The Singleton Fallacy: Why Current Critiques of Language Models Miss the Point.

Front Artif Intell

RISE, Stockholm, Sweden.

Published: September 2021

This paper discusses the current critique against neural network-based Natural Language Understanding solutions known as . We argue that much of the current debate revolves around an argumentation error that we refer to as : the assumption that a concept (in this case, language, meaning, and understanding) refers to a single and uniform phenomenon, which in the current debate is assumed to be unobtainable by (current) language models. By contrast, we argue that positing some form of (mental) "unobtanium" as definiens for understanding inevitably leads to a dualistic position, and that such a position is precisely the original motivation for developing distributional methods in computational linguistics. As such, we argue that language models present a theoretically (and practically) sound approach that is our current best bet for computers to achieve language understanding. This understanding must however be understood as a computational means to an end.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8452877PMC
http://dx.doi.org/10.3389/frai.2021.682578DOI Listing

Publication Analysis

Top Keywords

language models
12
language understanding
8
current debate
8
current
6
language
6
understanding
5
singleton fallacy
4
fallacy current
4
current critiques
4
critiques language
4

Similar Publications

Motivation: The knowledge of protein stability upon residue variation is an important step for functional protein design and for understanding how protein variants can promote disease onset. Computational methods are important to complement experimental approaches and allow a fast screening of large datasets of variations.

Results: In this work we present DDGemb, a novel method combining protein language model embeddings and transformer architectures to predict protein ΔΔG upon both single- and multi-point variations.

View Article and Find Full Text PDF

UniAMP: enhancing AMP prediction using deep neural networks with inferred information of peptides.

BMC Bioinformatics

January 2025

College of Artificial Intelligence, Nanjing Agricultural University, Weigang No.1, Nanjing, 210095, Jiangsu, China.

Antimicrobial peptides (AMPs) have been widely recognized as a promising solution to combat antimicrobial resistance of microorganisms due to the increasing abuse of antibiotics in medicine and agriculture around the globe. In this study, we propose UniAMP, a systematic prediction framework for discovering AMPs. We observe that feature vectors used in various existing studies constructed from peptide information, such as sequence, composition, and structure, can be augmented and even replaced by information inferred by deep learning models.

View Article and Find Full Text PDF

Cardiac wall motion abnormalities (WMA) are strong predictors of mortality, but current screening methods using Q waves from electrocardiograms (ECGs) have limited accuracy and vary across racial and ethnic groups. This study aimed to identify novel ECG features using deep learning to enhance WMA detection, referencing echocardiography as the gold standard. We collected ECG and echocardiogram data from 35,210 patients in California and labeled WMA using unstructured language parsing of echocardiographic reports.

View Article and Find Full Text PDF

The potential of large language models (LLMs) in medical applications is significant, and Retrieval-augmented generation (RAG) can address the weaknesses of these models in terms of data transparency and scientific accuracy by incorporating current scientific knowledge into responses. In this study, RAG and GPT-4 by OpenAI were applied to develop GuideGPT, a context aware chatbot integrated with a knowledge database from 449 scientific publications designed to provide answers on the prevention, diagnosis, and treatment of medication-related osteonecrosis of the jaw (MRONJ). A comparison was made with a generic LLM ("PureGPT") across 30 MRONJ-related questions.

View Article and Find Full Text PDF

Harnessing NLP to Investigate Biomarker Interactions and CVD Risks in Elderly Chronic Kidney Disease Patients.

SLAS Technol

January 2025

Department of General Medicine, The First Afiliated Hospital of Jinan University, Guangzhou, Guangdong, 510000, China. Electronic address:

Chronic kidney disease (CKD) significantly increases the risk of CVD diseases, particularly among elderly patients. Understanding the interaction between several biomarkers and cardiovascular (CVD) risks is crucial for improving patient outcomes and tailoring personalized treatment strategies. There is much more to learn about the intricate relationship between biomarkers and CVD risks in elderly CKD patients.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!