AI Article Synopsis

  • The Nav channel is vital for starting and spreading action potentials in neurons, with the α subunit requiring auxiliary proteins for full function.
  • A specific protein-protein interaction between Nav1.6 and fibroblast growth factor 14 (FGF14) is crucial for neuron excitability in the brain.
  • Peptides derived from FGF14, namely PLEV and EYYV, can inhibit this interaction and modulate Nav1.6 activity, indicating potential for developing new targeted treatments.

Article Abstract

The voltage-gated Na (Nav) channel is a primary molecular determinant of the initiation and propagation of the action potential. Despite the central role of the pore-forming α subunit in conferring this functionality, protein:protein interactions (PPI) between the α subunit and auxiliary proteins are necessary for the full physiological activity of Nav channels. In the central nervous system (CNS), one such PPI occurs between the C-terminal domain of the Nav1.6 channel and fibroblast growth factor 14 (FGF14). Given the primacy of this PPI in regulating the excitability of neurons in clinically relevant brain regions, peptides targeting the FGF14:Nav1.6 PPI interface could be of pre-clinical value. In this work, we pharmacologically evaluated peptides derived from FGF14 that correspond to residues that are at FGF14's PPI interface with the CTD of Nav1.6. These peptides, Pro-Leu-Glu-Val (PLEV) and Glu-Tyr-Tyr-Val (EYYV), which correspond to residues of the β12 sheet and β8-β9 loop of FGF14, respectively, were shown to inhibit FGF14:Nav1.6 complex assembly. In functional studies using whole-cell patch-clamp electrophysiology, PLEV and EYYV were shown to confer differential modulation of Nav1.6-mediated currents through mechanisms dependent upon the presence of FGF14. Crucially, these FGF14-dependent effects of PLEV and EYYV on Nav1.6-mediated currents were further shown to be dependent on the N-terminal domain of FGF14. Overall, these data suggest that the PLEV and EYYV peptides represent scaffolds to interrogate the Nav1.6 channel macromolecular complex in an effort to develop targeted pharmacological modulators.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8452925PMC
http://dx.doi.org/10.3389/fmolb.2021.742903DOI Listing

Publication Analysis

Top Keywords

plev eyyv
12
differential modulation
8
peptides derived
8
fibroblast growth
8
growth factor
8
nav16 channel
8
ppi interface
8
correspond residues
8
nav16-mediated currents
8
peptides
5

Similar Publications

Article Synopsis
  • The Nav channel is vital for starting and spreading action potentials in neurons, with the α subunit requiring auxiliary proteins for full function.
  • A specific protein-protein interaction between Nav1.6 and fibroblast growth factor 14 (FGF14) is crucial for neuron excitability in the brain.
  • Peptides derived from FGF14, namely PLEV and EYYV, can inhibit this interaction and modulate Nav1.6 activity, indicating potential for developing new targeted treatments.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!