Long noncoding RNAs (lncRNAs) have been substantially reported to have critical roles in regulating tumorigenesis in recent years. However, the expression pattern and biological function of SNHG17 in hepatocellular carcinoma (HCC) remain unclear. Bioinformatics analysis and qRT-PCR were performed to detect the expression pattern of SNHG17 in HCC tissues, adjacent nontumorous tissues, and cell lines. The effect of SNHG17 on proliferation, migration, and apoptosis of HCC was investigated by knockdown and overexpressing SNHG17 in HCC cell lines. RNA sequencing was utilized to explore the underlying mechanism. Utilizing publicly available TCGA-LIHC, GSE102079 HCC datasets, and qRT-PCR, we found SNHG17 was significantly upregulated in HCC tissues and cell lines and was notably associated with larger tumor size, poorly differentiation, presence of vascular invasion, and advanced TNM stage. Furthermore, gain- and loss-of-function studies demonstrated that SNHG17 promoted cell proliferation and migration and inhibited apoptosis of HCC. By employing RNA sequencing, we found knockdown of SNHG17 caused 1037 differentially expressed genes, highly enriched in several pathways, including metabolic, PI3K-Akt, cell adhesion, regulation of cell proliferation, and apoptotic pathway; among them, 92 were overlapped with SNHG17-related genes in the TCGA-LIHC dataset. Furthermore, ERH, TBCA, TDO2, and PDK4 were successfully validated and found significantly dysregulated in HCC tissues. Moreover, HCC patients with higher SNHG17 expression had a relatively poor overall survival and disease-free survival, and ERH and PDK4 also played a marked role in the prognosis of HCC. Broadly, our findings illustrate that SNHG17 acts as a noncoding oncogene in HCC progression, suggesting its potential value as a novel target for HCC therapy.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8455207 | PMC |
http://dx.doi.org/10.1155/2021/9990338 | DOI Listing |
J Transl Med
January 2025
Department of Radiation Oncology, State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, People's Republic of China.
Background: Drug resistance constitutes one of the principal causes of poor prognosis in breast cancer patients. Although cancer cells can maintain viability independently of mitochondrial energy metabolism, they remain reliant on mitochondrial functions for the synthesis of new DNA strands. This dependency underscores a potential link between mitochondrial energy metabolism and drug resistance.
View Article and Find Full Text PDFCell Mol Biol Lett
January 2025
Clinical Research Center, Jiading District Central Hospital Affiliated to Shanghai University of Medicine and Health Sciences, Shanghai, 201800, China.
Background: Circular (circ)RNAs have emerged as crucial contributors to cancer progression. Nonetheless, the expression regulation, biological functions, and underlying mechanisms of circRNAs in mediating hepatocellular carcinoma (HCC) progression remain insufficiently elucidated.
Methods: We identified circUCK2(2,3) through circRNA sequencing, RT-PCR, and Sanger sequencing.
Sci Rep
January 2025
Department of Biochemistry and Molecular Biology, Shanxi Key Laboratory of Birth Defect and Cell Regeneration, Key Laboratory of Coal Environmental Pathogenicity and Prevention (Ministry of Education, China, Shanxi Medical University, No. 56, Xinjian South Road, Yingze District, Taiyuan City, 030000, Shanxi Province, China.
There are many similarities between early embryonic development and tumorigenesis. The occurrence of neural tube defects (NTDs) and glioblastoma (GBM) are both related to the abnormal development of neuroectodermal cells. To obtain genes related to both NTDs and GBM, as well as small molecule drugs with potential clinical application value.
View Article and Find Full Text PDFLife Sci
January 2025
S&K Therapeutics, Ajou University Campus Plaza 418, Worldcup-ro 199, Yeongton-gu, Suwon 16502, Republic of Korea. Electronic address:
Aims: Fibroblast growth factor (FGF) is a broad class of secretory chemicals that act via FGF receptors (FGFR). The study aims to explore the role of a novel peptide, FAP1 (FGFR-agonistic peptide 1), in tissue regeneration and repair. It investigates whether FAP1 mimics basic fibroblast growth factor (bFGF) and accelerates wound healing both in vitro and in vivo.
View Article and Find Full Text PDFEur J Med Res
January 2025
Department of Surgical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, 277 West Yanta Road, Xi'an, 710061, Shaanxi, China.
Objective: The effect of coiled-coil domain-containing 154 (CCDC154) in liver cancer (LC) remains unexplored. The objective of this study was to investigate the role of CCDC154 in LC and its underlying mechanism.
Methods: The analysis of CCDC154 expression and prognosis was performed using UALCAN, Human Protein Atlas and Kaplan-Meier plotter websites.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!