Plant pathogens cause significant damage to plant products, compromising both quantities and quality. Even though many elements of agricultural practices are an integral part of reducing disease attacks, modern agriculture is still highly reliant on fungicides to guarantee high yields and product quality. The azoles, 14-alpha demethylase inhibitors, have been the fungicide class used most widely to control fungal plant diseases for more than four decades. More than 25 different azoles have been developed for the control of plant diseases in crops and the group has a world market value share of 20-25%. Azoles have proven to provide long-lasting control of many target plant pathogens and are categorized to have moderate risk for developing fungicide resistance. Field performances against many fungal pathogens have correspondingly been stable or only moderately reduced over time. Hence azoles are still, to date, considered the backbone in many control strategies and widely used as solo fungicides or as mixing partners with other fungicide groups, broadening the control spectrum as well as minimizing the overall risk of resistance development. This review describes the historic perspective of azoles, their market shares and importance for production of major crops like cereals, rice, oilseed rape, sugar beet, banana, citrus, and soybeans. In addition, information regarding use in amenity grass, in the wood preservation industry and as plant growth regulators are described. At the end of the review azoles are discussed in a wider context including future threats following stricter requirements for registration and potential impact on human health.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8453013 | PMC |
http://dx.doi.org/10.3389/fcimb.2021.730297 | DOI Listing |
Sensors (Basel)
January 2025
Department of Civil Engineering and Engineering Management, National Quemoy University, Kinmen 89250, Taiwan.
Ground-based LiDAR technology has been widely applied in various fields for acquiring 3D point cloud data, including spatial coordinates, digital color information, and laser reflectance intensities (I-values). These datasets preserve the digital information of scanned objects, supporting value-added applications. However, raw point cloud data visually represent spatial features but lack attribute information, posing challenges for automated object classification and effective management.
View Article and Find Full Text PDFComp Biochem Physiol A Mol Integr Physiol
January 2025
University of Connecticut, Department of Ecology and Evolutionary Biology, 75 North Eagleville Road, Storrs, CT 06269, United States of America.
Climate change will increase the frequency and severity of temperature extremes. Links between host thermal physiology and their gut microbiota suggest that organisms' responses to future climates may be mediated by their microbiomes, raising the question of how the thermal environment influences the microbiome itself. Vertebrate gut microbiomes influence the physiological plasticity of their hosts via effects on immunity, metabolism, and nutrient uptake.
View Article and Find Full Text PDFJ Fungi (Basel)
January 2025
State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China.
Central Asia, located at the heart of Eurasia, is renowned for its varied climate and vertical vegetative distribution, which support diverse biomes and position it as a global biodiversity hotspot. Despite this ecological richness, Central Asia's fungal diversity, particularly wood-inhabiting macrofungi, remains largely unexplored. This study investigates the diversity, ecological roles, and potential distribution of poroid Hymenochaetoid fungi in the region.
View Article and Find Full Text PDFSmall
January 2025
Department of Civil and Environment Engineering, University of Ulsan, Daehakro 93, Namgu, Ulsan, 44610, Republic of Korea.
The current lack of stable, scalable, and efficient coating technology dramatically limits the exploitation of solar-driven graphitic carbon nitride (CN) photocatalysts. Herein, a unique, efficient, and scalable method is reported to immobilize CN powder on various substrates ranging from Fluorine tin oxide (FTO), glass, Plexiglas, Al foil, Ti foil, and Granite stone, to even wood. The film shows an outstanding thickness of 212 µm, which is the highest value ever reported.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
MOE Engineering Research Center of Forestry Biomass Materials and Bioenergy, Beijing Forestry University, Beijing 100083, China.
Recently, transparent wood (TW) has been considered for many energy-efficient building products, such as windows and decorations. However, the existing TW still faces issues with size and thickness, as well as problems with functional fillers affecting the optical and mechanical properties of TW, which limits its wide application in the window products. In this study, a wood composite material (WCM) with good optical, mechanical, and thermal insulation and UV-shielding properties was prepared by using delignified wood (DW), methyl methacrylate (MMA), and 4-vinylphenylboric acid (VPBA).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!