The southern pine beetle, is a native pest of pine trees that has recently expanded its range into the northeastern United States. Understanding its colonization, dispersal, and connectivity will be critical for mitigating negative economic and ecological impacts in the newly invaded areas. Characterization of spatial-genetic structure can contribute to this; however, previous studies have reached different conclusions about regional population genetic structure, with one study reporting a weak east-west pattern, and the most recent reporting an absence of structure. Here we systematically assessed several explanations for the absence of spatial-genetic structure. To do this, we developed nine new microsatellite markers and combined them with an existing 24-locus data matrix for the same individuals. We then reanalyzed this full dataset alongside datasets in which certain loci were omitted with the goal of creating more favorable signal to noise ratios. We also partitioned the data based on the sex of individuals, and then employed a broad suite of genotypic clustering and isolation-by-distance (IBD) analyses. We found that neither inadequate information content in the molecular marker set, nor unfavorable signal-to-noise ratio, nor insensitivity of the analytical approaches could explain the absence of structure. Regardless of dataset composition, there was little evidence for clusters (., distinct geo-genetic groups) or clines (, gradients of increasing allele frequency differences over larger geographic distances), with one exception: significant IBD was repeatedly detected using an individual-based measure of relatedness whenever datasets included males (but not for female-only datasets). This is strongly indicative of broad-scale female-biased dispersal, which has not previously been reported for , in part owing to logistical limitations of direct approaches (e.g., capture-mark-recapture). Weak spatial-genetic structure suggests long-distance connectivity and that gene flow is high, but additional research is needed to understand range expansion and outbreak dynamics in this species using alternate approaches.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8418799 | PMC |
http://dx.doi.org/10.7717/peerj.11947 | DOI Listing |
Genes (Basel)
November 2024
Department of Math Science and Technology, University of Minnesota Crookston, Crookston, MN 56716, USA.
Large wild mammals are extremely important in their respective ecological communities and are frequently considered to be emblematic. This is the case of the different tapir species, the largest terrestrial mammals from the Neotropics. Despite their large size and being objects of interest for many naturalists, the field still lacks critical genetics and systematics information about tapir species.
View Article and Find Full Text PDFBMC Plant Biol
December 2024
Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, School of Life Sciences, Fudan University, Shanghai, 200438, China.
Single-population species (SPS) consist of only one natural population and often are at high risk of extinction. Although almost all species must go through this special stage in their evolutionary process, there is little understanding of how SPS survives. Camellia azalea C.
View Article and Find Full Text PDFVavilovskii Zhurnal Genet Selektsii
November 2024
Faculty of Mathematics, Natural Sciences and Information Technologies, University of Primorska, Koper, Slovenia Faculty of Environmental Protection, Velenje, Slovenia.
Red fox, Vulpes vulpes, is a globally distributed species characterized by its high adaptability to diverse habitats and a broad range of food resources. This remarkable adaptability has allowed the red fox to thrive in various environments, from urban areas to remote wilderness. In this study, we used a set of microsatellite markers for the comparative genetic analysis of red fox populations from two countries.
View Article and Find Full Text PDFEvol Appl
December 2024
Univ. Lille, CNRS, UMR 8198-Evo-Eco-Paleo Lille France.
The effective population size ( ) is a key parameter in conservation and evolutionary biology, reflecting the strength of genetic drift and inbreeding. Although demographic estimations of are logistically and time-consuming, genetic methods have become more widely used due to increasing data availability. Nonetheless, accurately estimating remains challenging, with few studies comparing estimates across molecular markers types and estimators such as single-sample methods based on linkage disequilibrium or sibship analyses versus methods based on temporal variance in allele frequencies.
View Article and Find Full Text PDFClimate change coupled with large-scale surface disturbances necessitate active restoration strategies to promote resilient and genetically diverse native plant communities. However, scarcity of native plant materials hinders restoration efforts, leading practitioners to choose from potentially viable but nonlocal seed sources. Genome scans for genetic variation linked with selective environmental gradients have become a useful tool in such efforts, allowing rapid delineation of seed transfer zones along with predictions of genomic vulnerability to climate change.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!