Organic and biological fertilizers are considered as a very important source of plant nutrients. A field experiment was conducted during 2017-2018 in paddy soil to investigate the effect of vermicomposting of cattle manure mixture with and rice straw on soil microbial activity, nutrient uptake, and grain yield under inoculation of N-fixing bacteria. Experimental factors consisted of organic amendments at six levels (vermicomposts prepared from manure (VM); manure + rice straw (VRM); manure + mixture (VAM); manure + rice straw + mixture (VRAM); raw manure without vermicomposting (M), and a control) and N-fixing bacteria at three levels (, , and non-inoculation). The results showed that, vermicompost treatments compared to control and raw manure significantly increased the number and biomass-C of soil microorganisms, urease activity, number of tillers hill, phosphorus (P) and potassium (K) uptake, and grain and protein yield. Inoculation of plants with N-fixing bacteria, especially increased the efficiency of organic amendments, so that the maximum urease activity, soil microbial activity, P and N uptake, and grain yield (4,667 (2017) and 5,081 (2018) kg/h) were observed in vermicompost treatments containing (VAM and VRAM) under inoculation with . The results of the study suggested that, using an organic source along with inoculation with appropriate N-fixing bacteria for vermicompost has a great effect on enzyme activity, soil biology, nutrient uptake and grain yield has a synergistic interaction on agronomic traits under flooded conditions. Therefore, this nutrient method can be used as one of the nutrient management strategies in the sustainable rice production.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8418801PMC
http://dx.doi.org/10.7717/peerj.10833DOI Listing

Publication Analysis

Top Keywords

n-fixing bacteria
20
uptake grain
16
rice straw
12
grain yield
12
inoculation n-fixing
8
sustainable rice
8
rice production
8
manure mixture
8
soil microbial
8
microbial activity
8

Similar Publications

Effects of Vegetation Restoration Type on Soil Greenhouse Gas Emissions and Associated Microbial Regulation on the Loess Plateau.

Ecol Evol

December 2024

Collaborative Innovation Center of Recovery and Reconstruction of Degraded Ecosystem in Wanjiang Basin co-Founded by Anhui Province and Ministry of Education, School of Ecology and Environment Anhui Normal University Wuhu China.

Investigating responses of soil greenhouse gas (GHG) emissions to vegetation restoration is important for global warming mitigation. On the Loess Plateau, a wide range of vegetation restoration strategies have been implemented to control land degradation. However, the thorough quantification of soil GHG emissions triggered by different modes of vegetation restoration is insufficient.

View Article and Find Full Text PDF

Plants host microorganisms that can facilitate their success in becoming invasive. Established plant invasions might thus provide useful insights into potential changes in plant-associated microbiomes over the course of the invasion process. Here, we investigated the endophytic bacterial communities of the invasive herbaceous legume , which is able to form mutualistic associations with N-fixing bacteria.

View Article and Find Full Text PDF

Unveiling the hidden world: How arbuscular mycorrhizal fungi and its regulated core fungi modify the composition and metabolism of soybean rhizosphere microbiome.

Environ Microbiome

October 2024

State Key Laboratory of Pharmaceutical Biotechnology, Institute for Plant Molecular Biology, School of Life Sciences, Nanjing University, Nanjing, 210023, China.

Article Synopsis
  • The study investigates how the AMF species Rhizophagus intraradices affects bacterial communities and metabolic functions in the rhizosphere of aluminum-sensitive soybeans grown in acidic soil, particularly when inoculated with other fungi.
  • Results showed that while the AMF and other fungal inoculations did not significantly change soil nutrient levels or specific plant traits, they did alter the composition and function of local bacterial communities.
  • Notably, co-inoculation led to an increase in beneficial bacteria associated with stress responses and improved plant resistance, as well as heightened antifungal activity within the soil environment.
View Article and Find Full Text PDF

Resource utilization of tail vegetables has raised increasing concerns in the modern agriculture. However, the effect and related mechanisms of flue-cured tobacco leaves on the product quality, phytotoxicity and bacterially-mediated nitrogen (N) transformation process of tail vegetable composting were poorly understood. Amendments of high-dosed (5% and 10% w/w) tobacco leaves into the compost accelerated the heating process, prolonged the time of thermophilic stage, increased the peak temperature, thereby improving maturity and shortening composting duration.

View Article and Find Full Text PDF

This work was carried out to isolate and perform molecular identification and selection of endophytic nitrogen-fixing bacteria (ENFB) to be utilized as biofertilizer. In this research, nodulous samples of peanuts were collected from inside dyke areas, namely, Phuoc Hung of An Phu, An Giang, Vietnam. Ten colonies were isolated from nutrient agar plates containing YMA's medium.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!