Background And Objectives: The oral cavity harbors numerous strains which display remarkable genotypic and phenotypic diversity. This study evaluated the genotypic and phenotypic diversity of 209 strains isolated from 336 patients with dental caries and compared with the universal reference strain, UA159.
Materials And Methods: Selective cultivation on mitis-salivaries-bacitracin agar and species-specific polymerase chain reaction (PCR) was carried out to isolate and identify the 209 isolates from 336 patients with dental caries. Arbitrarily primed polymerase chain reaction (AP-PCR), PCR amplification of specific gene, acid production and biofilm formation capacity were performed to evaluate the genotypic and phenotypic variation. Student's t-test and Chi-square test were used for analysis of variables and a probability of <0.05 was considered as significant.
Results: Our study revealed a high degree of genotypic and phenotypic variability among the clinical strains. We observed significant differences in colony morphology, generation time, biofilm formation, and acid production while growing in culture medium. All the clinical isolates were able to lower pH while growing in Todd-Hewitt broth. Consistent with phenotypic variations, we also observed genotypic variation by AP-PCR and gene specific PCR. AP-PCR analysis suggested that most of the patients with dental caries have distinct type of strains. Genes related to various two component systems were highly conserved among the isolated strains, however, bacteriocin encoding genes such as were absent in nearly half of the clinical isolates.
Conclusion: Our results support that clinical isolates have wide genotypic diversity and show variation in growth kinetics, acid production, acid tolerance and biofilm formation capacity and indicates the presence of diverse mechanism to initiate and establish the biofilm lifestyle which leads to tooth decay.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8421573 | PMC |
http://dx.doi.org/10.18502/ijm.v13i4.6968 | DOI Listing |
Clin Cosmet Investig Dermatol
January 2025
Department of Dermatology, Candidate Branch of National Clinical Research Centre for Skin and Immune Diseases, First Affiliated Hospital of Gannan Medical University, Ganzhou, 341000, People's Republic of China.
Dystrophic epidermolysis bullosa (DEB) is a heterogeneous and rare genetic skin disease caused by mutations in the gene, which encodes Type VII collagen. The absence or dysfunction of Type VII collagen can cause the dense lower layer of the basal membrane zone of the skin to separate from the dermis, leading to blister formation and various complications. In different DEB subtypes, the severity of the phenotype is associated, to some extent, with the outcome of Type VII collagen caused by mutations in the gene, which may be reduced in expression, remarkably reduced, or completely absent.
View Article and Find Full Text PDFWe report a systematic quantification of 10,841 unique proteins from over 700 GTEx samples, representing five human tissues. Sex, age and genetic factors are associated with variation in protein abundance. In total, 1981 cis-protein quantitative trait loci (cis-pQTL) are identified, of which a majority of protein targets have not been assayed in the recent plasma-based proteogenomic studies.
View Article and Find Full Text PDFWorld J Cardiol
January 2025
Institute of Cardiovascular Diseases & Department of Cardiology, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, Sichuan Province, China.
Hypertrophic cardiomyopathy (HCM) is an autosomal dominant inherited cardiomyopathy characterized by left ventricular hypertrophy. It is one of the chief causes of sudden cardiac death in younger people and athletes. Molecular-genetic studies have confirmed that the vast majority of HCM is caused by mutations in genes encoding sarcomere proteins.
View Article and Find Full Text PDFStroke
January 2025
Department of Experimental Neurology, Center for Stroke Research Berlin (CSB), Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Germany (M.F., S.B., S.M., K.W., M.E., A.M., U.D., C.S.).
Background: Contrary to the common belief, the most commonly used laboratory C57BL/6J mouse inbred strain presents a distinctive genetic and phenotypic variability, and for several traits, the genotype-phenotype link remains still unknown. Recently, we characterized the most important stroke survival factor such as brain collateral plasticity in 2 brain ischemia C57BL/6J mouse models (bilateral common carotid artery stenosis and middle cerebral artery occlusion) and observed a Mendelian-like fashion of inheritance of the posterior communicating artery (PcomA) patency. Interestingly, a copy number variant (CNV) spanning locus was reported to segregate in an analogous Mendelian-like pattern in the C57BL/6J colonies of the Jackson Laboratory.
View Article and Find Full Text PDFStat Med
February 2025
Department of Mathematical Sciences, University of Texas at Dallas, Richardson, Texas, USA.
Multi-gene panel testing allows efficient detection of pathogenic variants in cancer susceptibility genes including moderate-risk genes such as ATM and PALB2. A growing number of studies examine the risk of breast cancer (BC) conferred by pathogenic variants of these genes. A meta-analysis combining the reported risk estimates can provide an overall estimate of age-specific risk of developing BC, that is, penetrance for a gene.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!