Clinical studies from WHO have demonstrated that only 50-70% of patients adhere properly to prescribed drug therapy. Such adherence failure can impact therapeutic efficacy for the patients in question and compromises data quality around the population-level efficacy of the drug for the indications targeted. In this study, we applied various ensemble learning and deep learning models to predict medication adherence among patients. Our contribution to this endeavour involves targeting the problem of adherence prediction for a particularly challenging class of patients who self-administer injectable medication at home. Our prediction pipeline, based on event history, comprises a connected sharps bin which aims to help patients better manage their condition and improve outcomes. In other words, the efficiency of interventions can be significantly improved by prioritizing the patients who are most likely to be non-adherent. The collected data comprising a rich event feature set may be exploited for the purposes of predicting the status of the next adherence state for individual patients. This paper reports on how this concept can be realized through an investigation using a wide range of ensemble learning and deep learning models on a real-world dataset collected from such a system. The dataset investigated comprises 342,174 historic injection disposal records collected over the course of more than 5 years. A comprehensive comparison of different models is given in this paper. Moreover, we demonstrate that the selected best performer, long short-term memory (LSTM), generalizes well by deploying it in a true future testing dataset. The proposed end-to-end pipeline is capable of predicting patient failure in adhering to their therapeutic regimen with 77.35 % accuracy (Specificity: 78.28 %, Sensitivity: 76.42%, Precision: 77.87%,F1 score: 0.7714, ROC AUC: 0.8390).
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8460813 | PMC |
http://dx.doi.org/10.1038/s41598-021-98387-w | DOI Listing |
PLoS One
January 2025
Department of Computer Science, Khalifa University, Abu Dhabi, UAE.
A methodology is proposed, which addresses the caveat that line-of-sight emission spectroscopy presents in that it cannot provide spatially resolved temperature measurements in non-homogeneous temperature fields. The aim of this research is to explore the use of data-driven models in measuring temperature distributions in a spatially resolved manner using emission spectroscopy data. Two categories of data-driven methods are analyzed: (i) Feature engineering and classical machine learning algorithms, and (ii) end-to-end convolutional neural networks (CNN).
View Article and Find Full Text PDFPLoS One
January 2025
Department of Computer Science and Information Systems, College of Applied Sciences, AlMaarefa University, Ad Diriyah, Riyadh, Kingdom of Saudi Arabia.
Diabetes, a chronic condition affecting millions worldwide, necessitates early intervention to prevent severe complications. While accurately predicting diabetes onset or progression remains challenging due to complex and imbalanced datasets, recent advancements in machine learning offer potential solutions. Traditional prediction models, often limited by default parameters, have been superseded by more sophisticated approaches.
View Article and Find Full Text PDFSports (Basel)
January 2025
Aragon Institute of Engineering Research, University of Zaragoza, 50018 Zaragoza, Spain.
This study presents a novel system for diagnosing and evaluating soccer performance using wearable inertial sensors integrated into players' insoles. Designed to meet the needs of professional podiatrists and sports practitioners, the system focuses on three key soccer-related movements: passing, shooting, and changes of direction (CoDs). The system leverages low-power IMU sensors, Bluetooth Low Energy (BLE) communication, and a cloud-based architecture to enable real-time data analysis and performance feedback.
View Article and Find Full Text PDFMetabolites
January 2025
Department of Electrical Engineering, Qatar University, Doha P.O. Box 2713, Qatar.
Respiratory viruses, including Influenza, RSV, and COVID-19, cause various respiratory infections. Distinguishing these viruses relies on diagnostic methods such as PCR testing. Challenges stem from overlapping symptoms and the emergence of new strains.
View Article and Find Full Text PDFJ Imaging
January 2025
Department of Obstetrics and Gynecology, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand.
The current process of embryo selection in in vitro fertilization is based on morphological criteria; embryos are manually evaluated by embryologists under subjective assessment. In this study, a deep learning-based pipeline was developed to classify the viability of embryos using combined inputs, including microscopic images of embryos and additional features, such as patient age and developed pseudo-features, including a continuous interpretation of Istanbul grading scores by predicting the embryo stage, inner cell mass, and trophectoderm. For viability prediction, convolution-based transferred learning models were employed, multiple pretrained models were compared, and image preprocessing techniques and hyperparameter optimization via Optuna were utilized.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!