Disruption of origin chromatin structure by helicase activation in the absence of DNA replication.

Genes Dev

Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, North Carolina 27710, USA.

Published: October 2021

Prior to initiation of DNA replication, the eukaryotic helicase, Mcm2-7, must be activated to unwind DNA at replication start sites in early S phase. To study helicase activation within origin chromatin, we constructed a conditional mutant of the polymerase α subunit Cdc17 (or Pol1) to prevent priming and block replication. Recovery of these cells at permissive conditions resulted in the generation of unreplicated gaps at origins, likely due to helicase activation prior to replication initiation. We used micrococcal nuclease (MNase)-based chromatin occupancy profiling under restrictive conditions to study chromatin dynamics associated with helicase activation. Helicase activation in the absence of DNA replication resulted in the disruption and disorganization of chromatin, which extends up to 1 kb from early, efficient replication origins. The CMG holohelicase complex also moves the same distance out from the origin, producing single-stranded DNA that activates the intra-S-phase checkpoint. Loss of the checkpoint did not regulate the progression and stalling of the CMG complex but rather resulted in the disruption of chromatin at both early and late origins. Finally, we found that the local sequence context regulates helicase progression in the absence of DNA replication, suggesting that the helicase is intrinsically less processive when uncoupled from replication.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8494203PMC
http://dx.doi.org/10.1101/gad.348517.121DOI Listing

Publication Analysis

Top Keywords

helicase activation
20
dna replication
20
absence dna
12
replication
9
origin chromatin
8
helicase
8
activation absence
8
chromatin
6
dna
6
activation
5

Similar Publications

Background: Nasopharyngeal carcinoma (NPC) is characterized by high programmed death-ligand 1 (PD-L1) expression and abundant infiltration of non-malignant lymphocytes, which renders patients potentially suitable candidates for immune checkpoint blockade therapies. Palate, lung, and nasal epithelium clone (PLUNC) inhibit the growth of NPC cells and enhance cellular apoptosis and differentiation. Currently, the relationship between PLUNC (as a tumor-suppressor) and PD-L1 in NPC is unclear.

View Article and Find Full Text PDF

SMARCA4 regulates the NK-mediated killing of senescent cells.

Sci Adv

January 2025

MRC Laboratory of Medical Sciences (LMS), Du Cane Road, London W12 0NN, UK.

Induction of senescence by chemotherapeutic agents arrests cancer cells and activates immune surveillance responses to contribute to therapy outcomes. In this investigation, we searched for ways to enhance the NK-mediated elimination of senescent cells. We used a staggered screen approach, first identifying siRNAs potentiating the secretion of immunomodulatory cytokines to later test for their ability to enhance NK-mediated killing of senescent cells.

View Article and Find Full Text PDF

Background: Cancer immunotherapy has transformed metastatic cancer treatment, yet challenges persist regarding therapeutic efficacy. RECQL4, a RecQ-like helicase, plays a central role in DNA replication and repair as part of the DNA damage response, a pathway implicated in enhancing efficacy of immune checkpoint inhibitor (ICI) therapies. However, its role in patient response to ICI remains unclear.

View Article and Find Full Text PDF

Trichohepatoenteric syndrome (THES) is a rare genetic disorder inherited in an autosomal recessive manner. THES primarily leads to neonatal enteropathy, typically manifesting as severe, persistent diarrhea, distinctive facial features such as frontal bossing and a broad flat nasal bridge, woolly and fragile hair, immunodeficiency resulting in recurrent infections, failure to thrive (FTT), and liver complications including fibrosis or cirrhosis. This multisystem disorder is linked to mutations in the tetratricopeptide repeat domain 37 (TTC37) gene, also known as superkiller complex (SKIC) protein 3, responsible for THES type 1, and the Ski2-like ribonucleic acid (RNA) helicase (SKIV2L) gene, also known as SKIC2, responsible for THES type 2.

View Article and Find Full Text PDF

Acquired immunodeficiency syndrome is a systemic infectious disease caused by human immunodeficiency virus infection, which could attack the bones and heart. However, the relationship between Nuclear Complex Associated 3 Homolog (NOC3L) and DEAD box helicase 17 (DDX17) and acquired immunodeficiency complicated with viral myocarditis and osteoporosis is unclear. The acquired immune deficiency dataset GSE140713, GSE147162 and the osteoporosis dataset (GSE230665), and viral myocarditis dataset (GSE150392) configuration files were generated from gene expression omnibus.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!