The proinflammatory cytokine tumor necrosis factor (TNF) plays a central role in the host control of mycobacterial infections. Expression and release of TNF are tightly regulated, yet the molecular mechanisms that control the release of TNF by mycobacteria-infected host cells, in particular macrophages, are incompletely understood. Rab GTPases direct the transport of intracellular membrane-enclosed vesicles and are important regulators of macrophage cytokine secretion. Rab6b is known to be predominantly expressed in the brain where it functions in retrograde transport and anterograde vesicle transport for exocytosis. Whether it executes similar functions in the context of immune responses is unknown. Here we show that Rab6b is expressed by primary mouse macrophages, where it localized to the Golgi complex. Infection with Mycobacterium bovis bacille Calmette-Guérin (BCG) resulted in dynamic changes in Rab6b expression in primary mouse macrophages in vitro as well as in organs from infected mice in vivo. We further show that Rab6b facilitated TNF release by M. bovis BCG-infected macrophages, in the absence of discernible impact on Tnf messenger RNA and intracellular TNF protein expression. Our observations identify Rab6b as a positive regulator of M. bovis BCG-induced TNF trafficking and secretion by macrophages and positions Rab6b among the molecular machinery that orchestrates inflammatory cytokine responses by macrophages.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/imcb.12503 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!