Four novel fruit-derived biochars were developed: pomegranate peels (PB), prickly pear peels (PPB), carob (CB), and locust bean gum (LBGB). The feedstocks were pyrolyzed at 350 and 550 ℃ (under N), respectively, and characterized using Scanning Electron Microscopy (SEM), Elemental Analysis (EA), Diffuse Reflectance Infrared Fourier Transform Spectroscopy (DRIFTS), Brunauer-Emmett-Teller (B.E.T) analysis, and Thermogravimetric analysis (TGA). A systematic and comprehensive comparison for the adsorption of selected volatile organic compounds (VOCs) by biochar was established. Cresol, dimethyl trisulfide (DMTS), hexane, and benzene were examined as a function of contact time (30-480 min), mass (0.1-1 g), concentration levels (50-1000 ppb), efficiency, and reusability, using the headspace solid-phase microextraction gas chromatography-mass spectrometry (HS-SPME-GC-MS) method. PB 550 ℃ revealed a specific surface area of 8.3 m g, the fastest complete removal, an ideal mass of 1 g, 3-times reuse, and ∼ 99% removal of 500 ppb benzene, cresol, DMTS, and 100 ppb hexane.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.biortech.2021.125881 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!