In this work, a dual-signal output electrochemical immunosensor based on the Au-MoS/MOF high-efficiency catalytic cycle amplification strategy for the sensitive detection of neuron-specific enolase (NSE). The mixed-valence structure MOF (Fe/Fe-MOF) exhibits high-speed charge mobility and excellent electrochemical performance. Notably, nanoflowers-like MoS (MoS NFs), as a co-catalyst, were introduced into Fe/Fe-MOF to successfully ensure the stable cycle of Fe/Fe at the electrode interface. The constantly emerging of "fresh" active sites significantly amplified the current signal response. According to the electrochemical behavior, the catalytic cycle mechanism and electron transfer pathways between MoS and Fe/Fe-MOF were further discussed. The two output signals of a sample realized the self-calibration of the immunoassay results, which improved the reliability and sensitivity of the immunosensor. Under optimal conditions, the linear range was 1.00 pg/mL∼100 ng/mL, and the low detection limits were 0.37 pg/mL and 0.52 pg/mL. The results suggest that the as-proposed immunosensor will be promising in the biological analysis and early clinical diagnosis of cancer biomarkers.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bios.2021.113648DOI Listing

Publication Analysis

Top Keywords

catalytic cycle
12
dual-signal output
8
output electrochemical
8
electrochemical immunosensor
8
immunosensor based
8
based au-mos/mof
8
cycle amplification
8
amplification strategy
8
neuron-specific enolase
8
electrochemical
4

Similar Publications

Samarium as a Catalytic Electron-Transfer Mediator in Electrocatalytic Nitrogen Reduction to Ammonia.

J Am Chem Soc

January 2025

Division of Chemistry and Chemical Engineering, California Institute of Technology (Caltech), Pasadena, California 91125, United States.

Samarium diiodide (SmI) exhibits high selectivity for NR catalyzed by molybdenum complexes; however, it has so far been employed only as a stoichiometric reagent (0.3 equiv of NH per Sm) combined with coordinating proton sources (e.g.

View Article and Find Full Text PDF

Biodiesel presents a sustainable alternative to fossil fuels, yet traditional homogeneous catalysts like sodium and potassium hydroxide face challenges with separation and reuse. Calcium oxide (CaO) is an effective heterogeneous catalyst for biodiesel production, but its chemical instability under reaction conditions restricts its long-term performance. This study introduces MOF-mediated synthesis (MOFMS) of heterogeneous catalysts, specifically CaO@ZnO and ZnO@CaO nanocomposites, from inexpensive and non-toxic metal salts and linkers in water.

View Article and Find Full Text PDF

Energizing Robust Sulfur/Lithium Electrochemistry via Nanoscale-Asymmetric-Size Synergism.

J Am Chem Soc

January 2025

State Key Laboratory of Physical Chemistry of Solid Surface, Fujian Key Laboratory of Surface and Interface Engineering for High Performance Materials, College of Materials, Xiamen University, Xiamen 361005, China.

Sluggish redox kinetics and dendrite growth perplex the fulfillment of efficient electrochemistry in lithium-sulfur (Li-S) batteries. The complicated sulfur phase transformation and sulfur/lithium diversity kinetics necessitate an all-inclusive approach in catalyst design. Herein, a compatible mediator with nanoscale-asymmetric-size configuration by integrating Co single atoms and defective CoTe (Co-CoTe@NHCF) is elaborately developed for regulating sulfur/lithium electrochemistry synchronously.

View Article and Find Full Text PDF

In this study, the dispersion behavior of MoS₂ in ionic liquids (ILs) with varying alkyl chain lengths was the primary focus of investigation, followed by the design of a novel PAM/SMA/CMC/PDA@MoS hydrogel. By optimizing the concentrations of CMC and PDA@MoS, a bifunctional hydrogel with both sensing and catalytic functions was successfully developed. Mechanical tests revealed that the PAM/SMA/CMC/0.

View Article and Find Full Text PDF

Regulating the Thermodynamic Uniformity and Kinetic Diffusion of Zinc Anodes for Deep Cycling of Ah-Level Aqueous Zinc-Metal Batteries.

ACS Nano

January 2025

Power Battery & Systems Research Center, State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.

Zn metal anodes in mildly acidic electrolytes usually suffer from a series of problems, including parasitic dendrite growth and severe side reactions, significantly limiting the Zn utilization efficiency and cycling life. A deep understanding of the Zn stripping/plating process is essential to obtain high-efficiency and long-life Zn metal anodes. Here, the factors affecting the Zn stripping/plating process are revealed, suggesting that thermodynamic uniformity in bulk structures promotes an orderly Zn stripping process, and a fast kinetic diffusion rate on the Zn surface facilitates uniform Zn deposition.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!