Paenibacillus larvae cause an American foulbrood disease (AFB) that is responsible for the extinction of honeybee colonies and is a honeybee bacterial disease that has to be obligatory notified worldwide. Recently, bacteriophage studies targeting Paenibacillus larvae have emerged as a promising alternative treatment method. The inability of bacteria to create resistance against bacteriophages makes this method advantageous. As a consequence, this study was conducted to describe the genome and biological characteristics of a novel phage capable of lysing Paenibacillus larvae samples isolated from honeybee larva samples in Turkey. The Paenibacillus phage SV21 (vB_PlaP_SV21) was isolated by inducing Paenibacillus larvae strain SV21 with Mitomycin-C. Whole-genome sequencing, comparative genomics, and phylogenetic analysis of vB_PlaP_SV21 were performed. Transmission electron microscopy images showed that vB_PlaP_SV21 phage was a Podovirus morphology. The vB_PlaP_SV21 phage specific for Paenibacillus larvae was determined to belong to the Podoviridae family. Host range and specificity, burst size, lytic activity, and morphological characteristics of the phage were determined. Bioinformatic analysis of the Paenibacillus phage SV21 showed 77 coding sequences in its linear 44,949 bp dsDNA genome with a GC content of 39.33%. In this study, we analysed the genomes of all of the currently sequenced P. larvae phage genomes and classified them into five clusters and a singleton. According to molecular, morphological, and bioinformatics results, ıt was observed that API480 (podovirus), which was reported as a singleton in previous studies and public databases, and Paenibacillus phage SV21 phage could form a new cluster together.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.virusres.2021.198571DOI Listing

Publication Analysis

Top Keywords

paenibacillus larvae
24
paenibacillus phage
12
phage sv21
12
paenibacillus
9
phage
9
analysis vb_plap_sv21
8
vb_plap_sv21 phage
8
larvae
7
vb_plap_sv21
5
isolation characterization
4

Similar Publications

Differential impact of infection on the microbiota of and .

Heliyon

November 2024

ANSES, INRAE, École Nationale Vétérinaire d'Alfort, UMR BIPAR, Laboratoire de Santé Animale, Maisons-Alfort, F-94700, France.

The Western honey bee () is a vital agricultural pollinator whose populations are threatened by the parasitic mite destructor and associated pathogens. While the impact of species on honey bees, particularly larvae causing American foulbrood, is documented, their effect on the microbiota of mites remains unclear. This study aimed to investigate the influence of sp.

View Article and Find Full Text PDF

and Infesting : Detection by Quantitative PCR, Genotyping, and Involvement in the Transmission of Microbial Pathogens.

Insects

October 2024

Teramo, Diagnostic Laboratory, Istituto Zooprofilattico Sperimentale dell'Abruzzo e Molise (IZSAM), 86100 Campobasso, Italy.

The and parasitoid flies of the honeybee were found to infest apiaries of different European and Mediterranean countries but their prevalence and impact on apiary health are little known. Therefore, in this study, quantitative PCR (qPCR)-based methods were developed for their rapid detection directly in hive matrices. The newly developed qPCR assays were targeted at the mitochondrial cytochrome oxidase subunit I () gene for the and the cytochrome B (B) gene for the The tests were preliminarily applied to 64 samples of adult honeybees and hive debris collected in the Abruzzo and Molise regions, Central Italy, and the Republic of Kosovo showing that both flies occur in the two countries and more frequently in Italy.

View Article and Find Full Text PDF

The paenilamicins are a group of hybrid nonribosomal peptide-polyketide compounds produced by the honey bee pathogen Paenibacillus larvae that display activity against Gram-positive pathogens, such as Staphylococcus aureus. While paenilamicins have been shown to inhibit protein synthesis, their mechanism of action has remained unclear. Here we determine structures of paenilamicin PamB2-stalled ribosomes, revealing a unique binding site on the small 30S subunit located between the A- and P-site transfer RNAs (tRNAs).

View Article and Find Full Text PDF
Article Synopsis
  • The study examines the gut microbiota of black soldier fly larvae (BSFL) to determine the impact of genetics, diet, and larval age on their bacterial communities, using high-throughput sequencing.
  • Results showed significant influences from all three factors, allowing researchers to identify both common and lineage-specific core taxa in the larvae.
  • Key findings indicate that certain bacteria correlate with improved larval performance, with the genus Providencia being particularly important across both wild type and lab-adapted lines.
View Article and Find Full Text PDF

This study utilized cultivable methods and 16 S amplicon sequencing to compare taxonomic profiles and functional potential of gut bacteria in the scarab beetle, Anomola dimidiata, under cellulose-enriched conditions. Eight culturable cellulolytic gut bacteria were isolated from the midgut and hindgut of the scarab larvae, respectively. 16 S amplicon sequencing evinced that the most represented taxonomic profiles at phylum level in the fermentation chamber and midgut were Bacillota (71.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!