Chest Wall Reconstruction Using 3-Dimensional Printing: Functional and Mechanical Results.

Ann Thorac Surg

Thoracic Surgery Guy's Hospital, Guy's and St Thomas' NHS Foundation Trust, London, United Kingdom; Cancer Centre, School of Cancer and Pharmaceutical Sciences, King's College London, London, United Kingdom. Electronic address:

Published: September 2022

Background: Tumors involving the chest wall may require extensive resection and reconstruction. This study aims to evaluate functional, cosmetic results, and quality of life (QoL) in patients who had a reconstruction based on patient-specific 3-dimensional (3D) printing.

Methods: The patient-specific chest wall prosthesis was created for 10 patients. The anatomical models were 3D printed and used to produce a silicone mold that was filled with methyl methacrylate to create the customized prosthesis. Evaluation of the reconstruction was completed with a QoL assessment and postoperative tracking of patients' chest motion, using infrared markers. The distance between plot points representing markers on the operated and contralateral sides was measured to assess symmetrical motion.

Results: Twenty-three consecutive patients were enrolled, with the median age of 64 years. Thirteen patients underwent a nonrigid reconstruction, and 10 had a patient-specific rigid reconstruction with methyl methacrylate. The median number of ribs resected was 3. No postoperative complications or morbidity related to the prostheses were reported. The median hospital stay in the nonrigid reconstruction group was 8.5 days compared with 7.5 days (p = .167) in the rigid reconstruction group. Postoperatively, most patients had low levels of symptoms, with 82% experiencing chest pain and 53% experiencing dyspnea. Rigid reconstruction patients demonstrated more symmetrical breathing motion compared with nonrigid reconstruction patients. The mean distances were 2.32 ± 2.18 and 7.28 ± 5.87 (P < .00001), respectively.

Conclusions: This study shows that a 3D patient-specific prosthesis is feasible and safe, suggesting a possible trend toward improved breathing mechanics, QoL, and cosmetic results.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.athoracsur.2021.07.103DOI Listing

Publication Analysis

Top Keywords

chest wall
12
nonrigid reconstruction
12
rigid reconstruction
12
reconstruction
10
methyl methacrylate
8
reconstruction group
8
reconstruction patients
8
patients
7
chest
5
wall reconstruction
4

Similar Publications

Background: Carinal resection and reconstruction are complex surgical procedures often necessitated by tumors or other pathologies involving the tracheobronchial junction. Traditional approaches to these surgeries are highly invasive. The advent of uniportal video-assisted thoracoscopic surgery (VATS) along with the integration of extracorporeal membrane oxygenation (ECMO) offer potential advantages in reducing surgical trauma and improving outcomes.

View Article and Find Full Text PDF

Aneurysm rupture is a life-threatening event, yet its underlying mechanisms remain largely unclear. This study investigated the fracture properties of the thoracic aneurysmatic aorta (TAA) using the symmetry-constraint Compact Tension (symconCT) test and compared results to native and enzymatic-treated porcine aortas' tests. With age, the aortic stiffness increased, and tissues ruptured at lower fracture energy [Formula: see text].

View Article and Find Full Text PDF

A preliminary study was conducted using electronic portal imaging device (EPID) based dose verification in pre-treatment and in vivo dose reconstruction modes for breast cancer intensity-modulated radiation therapy (IMRT) technique with known repositioning set-up errors. For 43 IMRT plans, the set-up errors were determined from 43 sets of EPID images and 258 sets of cone beam computed tomography images. In-house developed Edose software was used to reconstruct the dose distribution using the pre-treatment and on-treatment (in vivo) EPID acquired fluence maps.

View Article and Find Full Text PDF

Aim: In this study, it was aimed to determine the changes in the anatomic structures of individuals with obstructive sleep apnea syndrome (OSAS) classified according to the apnea-hypopnea index (AHI).

Materials And Methods: Individuals were divided into groups as group 1 (AHI=0, n=20), group 2 (AHI ˂5, n=20), group 3 (AHI=5-15, n=20), group 4 (AHI=16-30, n=20), group 5 (AHI ˃30, n=20). The individuals left lateral cervical vertebra radiographs were taken.

View Article and Find Full Text PDF

We presented a case of a 49-year-old presenting with atypical chest pain and hypertrophic phenotype cardiomyopathy without coronary artery disease. At cardiac magnetic resonance (CMR), the left ventricle was of normal volumes and preserved global ejection fraction with an asymmetric wall hypertrophy. The evaluation of native myocardial T1 has been calculated at an average global value of 924 ms, compatible with hypertrophic phenotype cardiomyopathy with reduced native T1 values as observed in Anderson-Fabry disease.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!