Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The frontal eye field (FEF) is a key part of the oculomotor system, with dominant responses to the direction of single saccades. However, whether and how FEF contributes to sequential saccades remain largely unknown. By training rhesus monkeys to perform saccade sequences, we found sequence-related activities in FEF neurons, whose selectivity to saccade direction undergoes dynamic changes during sequential vs. single saccades. These sequence-related activities are context-dependent, exhibiting different firing activities during memory- vs. visually guided sequences. When the monkey was performing the sequential saccade task, the thresholds of microstimulation to evoke saccades in FEF were increased and the percentage of the successfully induced saccades was significantly reduced compared with the fixation condition. Pharmacological inactivation of FEF impaired the monkey's performance of previously learned sequential saccades, with different effects on the same actions depending on its position within the sequence. These results reveal the context-dependent, sequence-specific dynamic encoding of saccades in FEF, and underscore the crucial role of FEF in the planning and execution of sequential saccades. KEY POINTS: FEF neurons respond differently during sequential vs. single saccades Sequence-related FEF activity is context-dependent The microstimulation threshold in FEF was increased during the sequential task but the evoked saccade did not alter the sequence structure FEF inactivation severely impaired the performance of sequential saccades.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1113/JP282094 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!