The surface feature of solid electrolytes fundamentally governs their own physical properties and significantly affects the interaction with the electrode materials. The evaluation of interfacial contact between the electrolyte and the metallic anode is largely relied on the macroscopic contact angle measurement, which is influenced by the intrinsic wettability and the microstructure of the electrolyte. In this work, the surface chemistry of the solid electrolyte is first regulated via facile thermal treatments. Then, scanning probe microscopy (SPM)-based techniques are comprehensively adopted to study the interaction between the electrolyte and metallic anode at the nanoscale. By manipulating the overpotential applied on the SPM tip, the mobile sodium ions at the subsurface of the solid electrolyte can be extracted toward the surface, and the eventual topography of the products is deliberately correlated with the sodium wettability. In this context, the impact of surface treatment on the sodium wettability of the surface layer is systematically evaluated based on the topographic evolution at the nanoscale. Furthermore, the local electrochemical reaction dynamics is revealed by correlating the surface ionic activity and current-voltage (-) curves. This work presents a new methodology to effectively evaluate the sodium wettability of the solid electrolyte, and these findings can provide meaningful implications to the surface engineering of ceramic electrolytes for high-performance solid-state batteries.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsami.1c12059DOI Listing

Publication Analysis

Top Keywords

solid electrolyte
12
sodium wettability
12
surface
8
surface engineering
8
electrolyte metallic
8
metallic anode
8
electrolyte
6
response implication
4
implication nasicon
4
nasicon solid-state
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!