Ligands that bind to and stabilize guanine-quadruplex (G4) structures to regulate DNA replication have therapeutic potential for cancer and neurodegenerative diseases. Because there are several G4 topologies, ligands that bind to their specific types may have the ability to preferentially regulate the replication of only certain genes. Here, we demonstrated that binding ligands stalled the replication of template DNA at G4, depending on different topologies. For example, naphthalene diimide derivatives bound to the G-quartet of G4 with an additional interaction between the ligand and the loop region of a hybrid G4 type from human telomeres, which efficiently repressed the replication of the G4. Thus, these inhibitory effects were not only stability-dependent but also topology-selective based on the manner in which G4 structures interacted with G4 ligands. Our original method, referred to as a quantitative study of topology-dependent replication (QSTR), was developed to evaluate correlations between replication rate and G4 stability. QSTR enabled the systematic categorization of ligands based on topology-dependent binding. It also demonstrated accuracy in determining quantitatively how G4 ligands control the intermediate state of replication and the kinetics of G4 unwinding. Hence, the QSTR index would facilitate the design of new drugs capable of controlling the topology-dependent regulation of gene expression.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/jacs.1c05468 | DOI Listing |
Angew Chem Int Ed Engl
January 2025
Southeast University, Institute of Advanced Materials and School of Chemistry and Chemical Engineering, Institute of Advanced Materials and School of Chemistry and Chemical Engineering, 211189, Nanjing, CHINA.
In nature, organisms adapt to environmental changes through training to learn new abilities, offering valuable insights for developing intelligent materials. However, replicating this adaptive learning in synthetic materials presents a significant challenge. This study introduces a feasible approach to train liquid crystal elastomers (LCEs) by integrating a mechanophore tetraarylsuccinonitrile (TASN) into their main chain, addressing the challenge of enabling synthetic materials to exchange substances with their environment.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
February 2025
Department of Computer Science, Faculty of Information Technology and Electrical Engineering, Norwegian University of Science and Technology, Trondheim 7030, Norway.
Replication and the reported crises impacting many fields of research have become a focal point for the sciences. This has led to reforms in publishing, methodological design and reporting, and increased numbers of experimental replications coordinated across many laboratories. While replication is rightly considered an indispensable tool of science, financial resources and researchers' time are quite limited.
View Article and Find Full Text PDFJ Exp Psychol Gen
January 2025
Institute for Mind and Biology, University of Chicago.
Individual differences in working memory predict a wide range of cognitive abilities. However, little research has been done on whether working memory continues to predict task performance after repetitive learning. Here, we tested whether working memory ability continued to predict long-term memory (LTM) performance for picture sequences even after participants showed massive learning.
View Article and Find Full Text PDFPLoS Pathog
January 2025
Department of Microbiology, Immunology and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado, USA.
The mosquito midgut functions as a key interface between pathogen and vector. However, studies of midgut physiology and virus infection dynamics are scarce, and in Culex tarsalis-an extremely efficient vector of West Nile virus (WNV)-nonexistent. We performed single-cell RNA sequencing on Cx.
View Article and Find Full Text PDFPLoS Pathog
January 2025
Division of Infectious Diseases, University of Colorado Anschutz Medical Campus School of Medicine, Aurora, Colorado, United States of America.
Lenacapavir (LEN) is a highly potent, long-acting antiretroviral medication for treating people infected with muti-drug-resistant HIV-1 phenotypes. The inhibitor targets multifaceted functions of the viral capsid protein (CA) during HIV-1 replication. Previous studies have mainly focused on elucidating LEN's mode of action during viral ingress.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!