The discovery of a novel 2-aminotetrahydropyridine class of BACE1 inhibitors is described. Their pK and lipophilicity were modulated by a pending sulfonyl group, while good permeability and brain penetration were achieved via intramolecular hydrogen bonding. BACE1 selectivity over BACE2 was achieved in the S3 pocket by a novel bicyclic ring system. An optimization addressing reactive metabolite formation, cardiovascular safety, and CNS toxicity is described, leading to the clinical candidate JNJ-67569762 (), which gave robust dose-dependent BACE1-mediated amyloid β lowering without showing BACE2-dependent hair depigmentation in preclinical models. We show that has a favorable projected human dose and PK and hence presented us with an opportunity to test a highly selective BACE1 inhibitor in humans. However, was found to have a QT effect upon repeat dosing in dogs and its development was halted in favor of other selective leads, which will be reported in the future.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.jmedchem.1c00935 | DOI Listing |
Addict Biol
December 2024
Department of Psychological and Brain Sciences, University of California Santa Barbara, Santa Barbara, California, USA.
The early initiation of binge-drinking and biological sex are critical risk factors for the development of affective disturbances and cognitive decline, as well as neurodegenerative diseases including Alzheimer's disease. Further, a history of excessive alcohol consumption alters normal age-related changes in the pattern of protein expression in the brain, which may relate to an acceleration of cognitive decline. Here, we aimed to disentangle the interrelation between a history of binge-drinking during adolescence, biological sex and normal aging on the manifestation of negative affect, cognitive decline and associated biochemical pathology.
View Article and Find Full Text PDFComput Biol Med
December 2024
Department of Bioconvergence, Hoseo University, Asan, South Korea; Dept. of Food and Nutrition, Obesity/Diabetes Research Center, Hoseo University, Asan, South Korea. Electronic address:
Pharmaceuticals (Basel)
October 2024
Department of Molecular Biology & Genetics, Faculty of Life & Natural Sciences, Abdullah Gül University, 38080 Kayseri, Türkiye.
The goal of the current study was to investigate the inhibitory activity of six phenolic compounds, i.e., rosmarinic acid, gallic acid, oleuropein, epigallocatechin gallate (EGCG), 3-hydroxytyrosol, and quercetin, against β-site amyloid precursor protein cleaving enzyme-1 (BACE1), also known as β-secretase or memapsin 2, which is implicated in the pathogenesis of Alzheimer's disease (AD).
View Article and Find Full Text PDFPhytother Res
November 2024
Institute of Biomolecular Chemistry (ICB), National Research Council (CNR), Pozzuoli (NA), Italy.
Cannabidiolic (CBDA) and cannabigerolic (CBGA) acids are naturally occurring compounds from Cannabis sativa plant, previously identified by us as dual PPARα/γ agonists. Since the development of multitarget-directed ligands (MTDL) represents a valuable strategy to alleviate and slow down the progression of multifactorial diseases, we evaluated the potential ability of CBDA and CBGA to also inhibit enzymes involved in the modulation of the cholinergic tone and/or β-amyloid production. A multidisciplinary approach based on computational and biochemical studies was pursued on selected enzymes, followed by behavioral and electrophysiological experiments in an AD mouse model.
View Article and Find Full Text PDFExp Neurol
January 2025
Department of Biochemistry, Hargobind Khorana Block, Panjab University, Sector 25, Chandigarh 160014, India. Electronic address:
Alzheimer's disease (AD) is a global burden to the healthcare system with no viable treatment options till date. Rodents and primates have been extensively used as models for understanding AD pathogenesis and identifying therapeutic targets. However, the focus is now shifting towards developing alternate models.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!