In this study, a CRISPR/Cas12a (LbCpf1)-mediated electrochemiluminescence (ECL) paper-based platform on the basis of a three-dimensional (3D) DNA walker was proposed for the ultrasensitive detection of miRNA-141. Initially, 3D-rGO with a tremendous loading space was modified on the paper working electrode (PWE) to construct an excellent conductive substrate and facilitate the growth of AuPd nanoparticles (NPs). Afterward, the AuPd NPs were introduced as the coreaction emitter medium of the 3D-rGO/PWE to provide convenience for the transformation between SO and SO, amplifying the ECL emission of g-CN nanosheets (NSs). Meanwhile, with the help of Nt.BsmAI nicking endonuclease, a 3D DNA walker signal amplifier was designed to convert and magnify the target miRNA-141 into a particular trigger sequence, which could act as activator DNA to motivate the trans-acting deoxyribonuclease activity of CRISPR/Cas12a to further achieve efficient annihilation of the ECL signal. Furthermore, the proposed multimechanism-driven biosensor exhibited excellent sensitivity and specificity, with a relatively low detection limit at 0.331 fM (S/N = 3) in the concentration range between 1 fM and 10 nM. Consequently, the designed strategy not only extended the application scope of CRISPR/Cas12a but also devoted a new approach for the clinical diagnosis of modern medicine.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.analchem.1c03183 | DOI Listing |
Anal Chim Acta
February 2025
Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University) Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing, PR China. Electronic address:
Background: Sensitive and accurate detection of important cancer markers MicroRNAs (miRNAs) is critical to prevent and treat disease. Among many detection techniques, surface-enhanced Raman scattering(SERS) has attracted much attention due to its advantages such as narrow spectral peak, low interference and non-destructive detection. Interestingly, non-noble metal SERS substrates show good prospects due to their outstanding spectral reproducibility and biocompatibility.
View Article and Find Full Text PDFSince microRNAs (miRNAs) serve as markers for early cancer diagnosis, it is crucial to develop a novel biosensor to detect miRNAs quickly, sensitively and selectively. Hence, we developed a fluorescence biosensor based on target miRNA-initiated rolling circle amplification (RCA) to generate RCA products with multiple tandem catalytic hairpin DNA templates that trigger primer exchange reactions (PER) which extend short single-strand DNA (ssDNA) primers into long ssDNA. Subsequently, the long ssDNA activates the -cleavage activity of the clustered regularly interspaced short palindromic repeats (CRISPR)/Cas12a system to cleave a fluorescent reporter chain, enabling ultrasensitive detection of miRNAs through the output fluorescence signal.
View Article and Find Full Text PDFTalanta
April 2025
Institute for Agricultural Product Quality Safety and Testing Technology, Guangxi Academy of Agricultural Sciences, Nanning, 530007, China. Electronic address:
This paper presents a self-powered biosensing platform based on graphdiyne@Au (2D GDY@Au) nanoparticles and rolling circle-hybridization chain (RC-HC) dual linear cascade amplification technology, which significantly enhances target recognition and signal amplification efficiency for miRNA-141. Specifically, the target on bioanode outputs a large amount of single-stranded DNA (T1) through the strand displacement amplification (SDA) mechanism. This efficient target recycling process triggers RC-HC dual linear cascade reaction.
View Article and Find Full Text PDFAnal Chem
October 2024
Molecular Science and Biomedicine Laboratory, State Key Laboratory for Chemo/Bio-Sensing and Chemometrics, College of Material Science and Engineering, College of Chemistry and Chemical Engineering, College of Biology, Hunan University, Changsha 410082, Hunan, China.
Anal Chem
September 2024
Antwerp Engineering, Photoelectrochemistry and Sensing (A-PECS), University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium.
Photoelectrochemical detection of nucleic acid-based cancer biomarkers offers opportunities for highly sensitive, selective, and fast quantitative detection using low-cost measurement instruments. In order to establish itself as a standard method for identifying and quantifying nucleic acids, we have developed a multiplexing strategy using LED technology for photoelectrochemical detection in 96 samples simultaneously. A dedicated setup based on the 96-well plate configuration with a custom-made 96-well LED array was developed.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!