Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Chirality involved reactions enable to probe features in the fields of asymmetric synthesis and catalysis, which allow to gain insight into the fundamental mechanisms of topochemically controlled reactions. However, observation of the chirality-associated reaction dynamics with simultaneous structural determination of microscopic features has been lacking. Here, we report the direct visualization of the electron-beam-stimulated reaction dynamics of HgS nanostructures with chiral and achiral morphologies simultaneously in both real and reciprocal space. Under the electron-beam excitation of HgS nanostructures, the formation and evaporation dynamics of Hg nanodroplets were vividly pictured, while the reciprocal space imaging revealed the structural transformation from monocrystalline to polycrystalline. Interestingly, such induced changes were size dependent, which were slowed when involving the chirality in the nanostructures. The finding offers a fundamental understanding of topochemically controlled reaction mechanisms and holds promise of tuning asymmetric synthesis for catalysis-related applications.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsnano.1c05243 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!