Novel electroosmotic micromixer configuration based on ion-selective microsphere.

Electrophoresis

Laboratory of Micro- and Nanoscale Electro- and Hydrodynamics, Financial University, Krasnodar, Russia.

Published: December 2021

In this paper, a micromixer of a new configuration is presented, consisting of a spherical chamber in the center of which an ion-selective microsphere is placed. Stratified liquid is introduced through the chamber via inlet and outlet holes under an external pressure gradient and an external electric field is directed in such a way that the resulting electroosmotic flow is directed against the pressure-driven flow, resulting in mixing. The investigation is carried out by direct numerical simulation on a super-computer. Optimal values of the applied electric field are determined to yield strong mixing. Above this optimal mixing regime, a number of instabilities and bifurcations are realized, which qualitatively coincide with those occurring during electrophoresis of an ion-selective microgranule. As shown by our calculation, these instabilities do not lead to an enhanced mixing. The resulting electroconvective vortices remain confined near the surface of the microgranule, and do not sufficiently perturb the stratified fluid flow further from the granule. On the other hand, another type of instability caused by the salt concentration gradient can generate sufficiently strong oscillations to enhance mixing. However, this only occurs when the external electric field is sufficiently high that the electroosmotic flow is comparable to the pressure-driven flow. This ultimately leads to creation of reverse flows of the liquid and cessation of the device operation. Thus, it was shown that the best mixing occurs in the absence of electrokinetic instability. Based on the data obtained, it is possible to select the necessary geometric characteristics of the micromixer to achieve the optimal mixing mode for a given set of liquids, which may be ten times more effective than passive mixers at the same flow rates. A comparison with the experimental data of the other authors confirms the effectiveness of this device and its other capabilities. Furthermore, the basic device design can be operated in other modes, for example, an electrohydrodynamic pump, a streaming current generator, or even a micro-reactor, depending on the system parameters and choice of an ion-selective granule.

Download full-text PDF

Source
http://dx.doi.org/10.1002/elps.202100040DOI Listing

Publication Analysis

Top Keywords

electric field
12
micromixer configuration
8
ion-selective microsphere
8
external electric
8
electroosmotic flow
8
pressure-driven flow
8
optimal mixing
8
mixing occurs
8
mixing
7
flow
6

Similar Publications

The recovery of valuable materials from spent lithium-ion batteries (LIBs) has experienced increasing demand in recent years. Current recycling technologies are typically energy-intensive and are often plagued by high operation costs, low processing efficiency, and environmental pollution concerns. In this study, an efficient and environmentally friendly dielectrophoresis (DEP)-based approach is proposed to separate the main components of "black mass" mixtures from LIBs, specifically lithium iron phosphate (LFP) and graphite, based on their polarizability differences.

View Article and Find Full Text PDF

The incorporation of polymeric insulators has led to notable achievements in the field of organic semiconductors. By altering the blending concentration, polymeric insulators exhibit extensive capabilities in regulating molecular configuration, film crystallinity, and mitigation of defect states. However, current research suggests that the improvement in such physical properties is primarily attributed to the enhancement of thin film morphology, an outcome that seems to be an inevitable consequence of incorporating insulators.

View Article and Find Full Text PDF

Unlocking new possibilities in ionic thermoelectric materials: a machine learning perspective.

Natl Sci Rev

January 2025

Key Laboratory for Thermal Science and Power Engineering of Ministry of Education, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, China.

The high thermopower of ionic thermoelectric (-TE) materials holds promise for miniaturized waste-heat recovery devices and thermal sensors. However, progress is hampered by laborious trial-and-error experimentations, which lack theoretical underpinning. Herein, by introducing the simplified molecular-input line-entry system, we have addressed the challenge posed by the inconsistency of -TE material types, and present a machine learning model that evaluates the Seebeck coefficient with an of 0.

View Article and Find Full Text PDF

Purpose: To theoretically and experimentally study implant lead tip heating caused by radiofrequency (RF) power deposition in different wire configurations that contain loop(s).

Methods: Maximum temperature rise caused by RF heating was measured at 1.5T on 20 insulated, capped wires with various loop and straight segment configurations.

View Article and Find Full Text PDF

Introduction: Traditional extraocular electrical stimulation typically produces diffuse electric fields across the retina, limiting the precision of targeted therapy. Temporally interfering (TI) electrical stimulation, an emerging approach, can generate convergent electric fields, providing advantages for targeted treatment of various eye conditions.

Objective: Understanding how detailed structures of the retina, especially the optic nerve, affects electric fields can enhance the application of TI approach in retinal neurodegenerative and vascular diseases, an essential aspect that has been frequently neglected in previous researches.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!