A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

The role of USP7 in the Shoc2-ERK1/2 signaling axis and Noonan-like syndrome with loose anagen hair. | LitMetric

The ERK1/2 (also known as MAPK3 and MAPK1, respectively) signaling pathway is critical in organismal development and tissue morphogenesis. Deregulation of this pathway leads to congenital abnormalities with severe developmental dysmorphisms. The core ERK1/2 cascade relies on scaffold proteins, such as Shoc2 to guide and fine-tune its signals. Mutations in SHOC2 lead to the development of the pathology termed Noonan-like Syndrome with Loose Anagen Hair (NSLAH). However, the mechanisms underlying the functions of Shoc2 and its contributions to disease progression remain unclear. Here, we show that ERK1/2 pathway activation triggers the interaction of Shoc2 with the ubiquitin-specific protease USP7. We reveal that, in the Shoc2 module, USP7 functions as a molecular 'switch' that controls the E3 ligase HUWE1 and the HUWE1-induced regulatory feedback loop. We also demonstrate that disruption of Shoc2-USP7 binding leads to aberrant activation of the Shoc2-ERK1/2 axis. Importantly, our studies reveal a possible role for USP7 in the pathogenic mechanisms underlying NSLAH, thereby extending our understanding of how ubiquitin-specific proteases regulate intracellular signaling.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8627560PMC
http://dx.doi.org/10.1242/jcs.258922DOI Listing

Publication Analysis

Top Keywords

role usp7
8
noonan-like syndrome
8
syndrome loose
8
loose anagen
8
anagen hair
8
mechanisms underlying
8
shoc2
5
usp7 shoc2-erk1/2
4
shoc2-erk1/2 signaling
4
signaling axis
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!