Polyethylene melt conductivity was increased by adding a commercial anti-static agent, which resulted in a 20× decrease in electrospun fiber diameter and formation of a significant fraction of sub-micron diameter fibers. Two polyethylene formulations and varying additive concentrations were utilized to span the parameter space of conductivity and viscosity. The key role of conductivity in determining the jet radius (which sets the upper limit on the fiber size) is discussed in the context of fluid mechanics theory and previous simulations. Parameters which affect the conversion of the liquid jet to a solid fiber and the pertinent theory are outlined. An "unconfined" experimental configuration is utilized to both avoid potential needle clogging and enable direct observation of important characteristic length scales related to the interaction of the fluid and the applied electric field. In this approach, the fluid spontaneously forms an array of cone perturbations which act as stationary "nozzles" through which the mobile fluid flows to form the jet. The experimental data and theory considerations allow for a holistic discussion of the interaction between flow rate, viscosity, conductivity, and the resultant jet and fiber size. Information about the fluid viscosity and conductivity gained by observing the electrospinning process is highlighted. Schemes for theoretically predicting the cone-jet density, cone size, and flow rate are compared to experimental results.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d1sm01101dDOI Listing

Publication Analysis

Top Keywords

fiber diameter
8
fiber size
8
flow rate
8
viscosity conductivity
8
conductivity
6
fiber
5
fluid
5
increasing ionic
4
ionic conductivity
4
conductivity thermoplastics
4

Similar Publications

Antimicrobial membranes based on polycaprolactone:pectin blends reinforced with zeolite faujasite for cloxacillin-controlled release.

Discov Nano

January 2025

National Nanotechnology Laboratory for Agriculture (LNNA), Embrapa Instrumentação, 1452 XV de Novembro St., São Carlos, SP, 13560-970, Brazil.

Multifunctional membranes applied to biomedical materials become attractive to support the biological agents and increase their properties. In this study, biopolymeric fibers based on polycaprolactone (PCL) and pectin (PEC) were reinforced with faujasite zeolite (FAU) for cloxacillin antibiotic (CLX) loading. FAU with a high specific surface area (347 ± 8 m g), high crystallinity and particles with a diameter of up to 100 nm were produced under optimized synthesis conditions (100 °C/4 h).

View Article and Find Full Text PDF

This study investigates the influence of needleless versus needle-based electrospinning methods on the fiber diameter of polyamide 6 (PA6) nanofibers under comparable conditions, with an emphasis on potential pharmaceutical applications. Additionally, it examines how varying solvent systems impact fiber diameter specifically in needleless electrospinning. In this study, it was found that fibers produced by the needleless method were thicker compared to those produced by the needle-based method, a trend attributable to the specific solution characteristics and parameter settings unique to this study.

View Article and Find Full Text PDF

Wound care presents an imposed financial burden for healthcare organizations, prompting the need for novel and cost-efficient dressings. In this study, we address this challenge by introducing a novel approach to fabricate antibacterial alginate-based fibrous materials using a combination of wet spinning and the wet-laying method, which offer advantages including structural and functional properties such as breathability, nontoxicity, biocompatibility, and cost-effectiveness. The wet spinning method was employed to develop porous and non-porous Ca-alginate fibers with diameters of 100 ± 4.

View Article and Find Full Text PDF

Study on the preparation and design of chenille/polyester integrated yarns and its acoustic properties.

Sci Rep

January 2025

Shanghai Frontiers Science Research Center of Advanced Textiles, College of Textiles, Donghua University, Shanghai, 201620, China.

With the rapid development of industrialization and urbanization, the impact of noise on people's health has become an increasingly serious issue, but it is still a challenge for the reducing the noise due to its complex property. Textiles with many loose porous structures have gained much significant attentions, thus chenille yarns with plush fibers on the surface, and polyester monofilament were chosen to fabricate the integrated knitting yarns, and their fundamental and mechanical properties were fully evaluated. The results showed that the diameter and braiding angle of the blended yarns decreased with the increase of pitch, resulting in a linear correlation of R > 0.

View Article and Find Full Text PDF
Article Synopsis
  • The study aimed to evaluate the effectiveness of antimicrobial photodynamic therapy (aPDT) combined with mechanical debridement (MD) in treating peri-implantitis in patients undergoing chemotherapy compared to systemically healthy patients.
  • Both patient groups were assessed; however, results showed no significant differences in key measurements (plaque and gingival indices, probing depth, and bone loss) between the two groups at both baseline and three-month follow-up.
  • Overall, the findings indicated that adding aPDT to MD did not lead to enhanced treatment outcomes for peri-implantitis in either chemotherapy patients or systemically healthy individuals.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!