Mechanism and kinetics for the reaction of methyl peroxy radical with O.

Phys Chem Chem Phys

SRI International, Menlo Park, CA 94025, USA.

Published: October 2021

Quantum chemical calculations and dynamics simulations were performed to study the reaction between methyl peroxy radical (CHO) and O. The reaction proceeds through three different pathways (1) H-atom abstraction, (2) O addition and (3) concerted H-atom shift and O addition reactions. The concerted H-atom shift and O addition pathway is the most favourable reaction both kinetically and thermodynamically. The major product channel formed from these reactions is HCO + OH + O. Trajectory calculations also confirm that HCO + OH + O is the main product channel. An estimated rate constant expression for this reaction from master equation calculations is 4.20 × 10 e cm mole s.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d1cp02427bDOI Listing

Publication Analysis

Top Keywords

reaction methyl
8
methyl peroxy
8
peroxy radical
8
concerted h-atom
8
h-atom shift
8
shift addition
8
product channel
8
reaction
5
mechanism kinetics
4
kinetics reaction
4

Similar Publications

C-C bond coupling with sp C-H bond via active intermediates from CO hydrogenation.

Nat Commun

January 2025

Key Laboratory of advanced catalysis, College of Chemistry and Chemical Engineering, Lanzhou University, 730000, Lanzhou, China.

Article Synopsis
  • CO hydrogenation has been identified as a more sustainable and efficient alternative to methanol in the side-chain alkylation of 4-methylpyridine (MEPY) using a ZnZrO/CsX tandem catalyst, achieving a conversion rate of 19.6%.
  • This new method results in 82% selectivity for 4-ethylpyridine (ETPY) and demonstrates 6.5 times greater activity compared to traditional methanol-mediated processes.
  • The success of this catalytic process is attributed to the dual functionality of the catalyst components, facilitating both CO hydrogenation and the activation of C-H and C-C bonds, with CHO* species acting as the crucial intermediate.
View Article and Find Full Text PDF

Poly(ionic liquid)-regulated green one-pot synthesis of Au@Pt porous nanospheres for the smart detection of acid phosphatase and organophosphorus inhibitor.

Talanta

January 2025

State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Engineering Research Center of Technical Textiles, Ministry of Education, College of Materials Science and Engineering, College of Science in Donghua University, State Key Laboratory of Polyolefins and Catalysis, Shanghai Key Laboratory of Catalysis Technology for Polyolefins (Shanghai Research Institute of Chemical Industry Co., Ltd., Shanghai), Key Laboratory of High Performance Fibers & Products, PR China. Electronic address:

Here, a green poly(ionic liquid)-regulated one-pot method is developed for the synthesis of Au@Pt core-shell nanospheres (PNSs) under mild reaction conditions in water. It is found that the poly(ionic liquid) poly[1-methyl-3-butyl (3-hydroxy) imidazole] chloride (PIL-Cl) is very vital to guide the construction of Au@Pt PNSs. The as-obtained Au@Pt-1 PNSs have perfect spherical outlines, porous core-shell structures and large specific surface area by which they exhibit excellent peroxidase-like activity in acidic media and can be used to develop a simple and reliable colorimetric sensing platform.

View Article and Find Full Text PDF

To elucidate interfacial dynamics during electrocatalytic reactions, it is crucial to understand the adsorption behavior of organic molecules on catalytic electrodes within the electric double layer (EDL). However, the EDL structure in aqueous environments remains intricate when it comes to the electrochemical amination of acetone, using methylamine as a nitrogen source. Specifically, the interactions of acetone and methylamine with the copper electrode in water remain unclear, posing challenges in the prediction and optimization of reaction outcomes.

View Article and Find Full Text PDF

A theoretical study on the environmental oxidation of fenpyrazamine fungicide initiated by hydroxyl radicals in the aqueous phase.

Environ Sci Process Impacts

January 2025

Univ. Lille, CNRS, UMR 8522, Physico-Chimie des Processus de Combustion et de l'Atmosphère - PC2A, 59000 Lille, France.

Fenpyrazamine (FPA) is a widely used fungicide in agriculture to control fungal diseases, but its environmental degradation by oxidants and the formation of potential degradation products remain unexplored. This study investigates the oxidation of FPA by hydroxyl radicals (HO˙) using density functional theory (DFT) calculations at the M06-2X/6-311++G(3df,3pd)//M06-2X/6-31+G(d,p) level of theory. Three standard oxidation mechanisms, including formal hydrogen transfer (FHT), radical adduct formation (RAF), and single electron transfer (SET), were evaluated in the aqueous phase, with reaction kinetics analyzed over a temperature range of 283-333 K.

View Article and Find Full Text PDF

A Borenium-Borane Composite for Exhaustive Reduction of Oxo-Chemicals.

J Am Chem Soc

January 2025

School of Chemistry and Chemical Engineering, Henan Key Laboratory of Boron Chemistry and Advanced Materials, Henan Normal University, Xinxiang, Henan453007,China.

Borenium ions have attracted significant attention in organic transformations due to their strong Lewis acidity. The reported borenium ions are often stabilized by sterically demanding substituents and strong coordination bonds. Herein, we have synthesized a small steric borenium-equivalent NHBHOTf and subjected it to the exhaustive reduction of a carboxylic functional group to a methyl group, which shows broad functional group tolerance.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!