A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Large-Area Pixelized Optoelectronic Neuromorphic Devices with Multispectral Light-Modulated Bidirectional Synaptic Circuits. | LitMetric

The complete hardware implementation of an optoelectronic neuromorphic computing system is considered as one of the most promising solutions to realize energy-efficient artificial intelligence. Here, a fully light-driven and scalable optoelectronic neuromorphic circuit with metal-chalcogenide/metal-oxide heterostructure phototransistor and photovoltaic divider is proposed. To achieve wavelength-selective neural operation and hardware-based pattern recognition, multispectral light modulated bidirectional synaptic circuits are utilized as an individual pixel for highly accurate and large-area neuromorphic computing system. The wavelength selective control of photo-generated charges at the heterostructure interface enables the bidirectional synaptic modulation behaviors including the excitatory and inhibitory modulations. More importantly, a 7 × 7 neuromorphic pixel circuit array is demonstrated to show the viability of implementing highly accurate hardware-based pattern training. In both the pixel training and pattern recognition simulation, the neuromorphic circuit array with the bidirectional synaptic modulation exhibits lower training errors and higher recognition rates, respectively.

Download full-text PDF

Source
http://dx.doi.org/10.1002/adma.202105017DOI Listing

Publication Analysis

Top Keywords

bidirectional synaptic
16
optoelectronic neuromorphic
12
synaptic circuits
8
neuromorphic computing
8
computing system
8
neuromorphic circuit
8
hardware-based pattern
8
pattern recognition
8
highly accurate
8
synaptic modulation
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!