Mammalian cell-produced recombinant human erythropoietin (rhuEPO) has been shown to be a multimodal neuroprotectant targeting an array of key pathological mechanisms in experimental stroke models. However, the rhuEPO clinical trials were terminated due to increased risk of thrombosis, largely ascribed to its erythropoietic function. We recently took advantage of a plant-based expression system lacking sialylation capacity to produce asialo-rhuEPO, a rhuEPO derivative without sialic acid residues. In the present study, we proved that asialo-rhuEPO is non-erythropoietic by repeated intravenous injection (44 μg/kg bw) in mice showing no increase in hemoglobin levels and red blood cell counts, and confirmed that it is non-immunogenic by measuring humoral response after immunizing the mice. We demonstrate that it is neuroprotective in a cerebral ischemia and reperfusion (I/R) mouse model, exhibiting ~ 50% reduction in cerebral infarct volume and edema, and significant improvement in neurological deficits and histopathological outcome. Our studies further revealed that asialo-rhuEPO, like rhuEPO, displays pleiotropic neuroprotective effects, including restoring I/R-interrupted mitochondrial fission and fusion proteins, preventing I/R injury-induced increase in mitophagy and autophagy markers, and inhibiting apoptosis to benefit nerve cell survival. Most importantly, asialo-rhuEPO lacking erythropoietic activity and immunogenicity holds great translational potential as a multimodal neuroprotectant for stroke treatment.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10068895 | PMC |
http://dx.doi.org/10.1007/s12975-021-00943-z | DOI Listing |
World Neurosurg
December 2024
Clinical and Translational Neuroscience Unit, Department of Neurology and Feil Brain and Mind Research Institute, Weill Cornell Medicine, New York, New York, USA. Electronic address:
The subspecialty of neurocritical care has grown significantly over the past 40 years along with advancements in the medical and surgical management of neurological emergencies. The modern neuroscience intensive care unit (neuro-ICU) is grounded in close collaboration between neurointensivists and neurosurgeons in the management of patients with such conditions as ischemic stroke, aneurysmal subarachnoid hemorrhage, intracerebral hemorrhage, subdural hematomas, and traumatic brain injury. Neuro-ICUs are also capable of specialized monitoring such as serial neurological examinations by trained neuro-ICU nurses; invasive monitoring of intracranial pressure, cerebral oxygenation, and cerebral hemodynamics; cerebral microdialysis; and noninvasive monitoring, including the use of pupillometry, ultrasound monitoring of optic nerve sheath diameters, transcranial Doppler ultrasonography, near-infrared spectroscopy, and continuous electroencephalography.
View Article and Find Full Text PDFJ Med Case Rep
December 2024
Department of Gastroenterology, China-Japan Friendship Hospital, Beijing, 100029, China.
Background: Polyarteritis nodosa is a relatively uncommon type of systemic necrotizing vasculitis that primarily affects medium-sized arteries. While gastrointestinal involvement is known in polyarteritis nodosa, heavy gastrointestinal bleeding due to gastric ulceration is relatively uncommon. We present the case of an 81-year-old male of Chinese ethnicity who experienced severe gastrointestinal bleeding as a result of polyarteritis nodosa and an innovative treatment approach for a better patient outcomes.
View Article and Find Full Text PDFInt J Mol Sci
November 2024
Department of Neuroscience, Korea University College of Medicine, Seoul 02841, Republic of Korea.
An ischemic cerebral stroke results from the interruption of blood flow to the brain, triggering rapid and complex cascades of excitotoxicity, oxidative stress, and inflammation. Current reperfusion therapies, including intravenous thrombolysis and mechanical thrombectomy, cause further brain injury due to reperfusion-induced cytotoxicity. To date, novel cytoprotective therapies that could address these challenges have yet to be developed, likely due to the limitations of targeting a single pathologic mechanism.
View Article and Find Full Text PDFNeuroscience
November 2024
Department of Radiology, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210008, China. Electronic address:
Mol Psychiatry
November 2024
Department of Pharmacology, School of Medicine, University of Crete, Heraklion, 71003, Greece.
Alzheimer's Disease (AD) is an incurable and debilitating progressive, neurodegenerative disorder which is the leading cause of dementia worldwide. Neuropathologically, AD is characterized by the accumulation of Aβ amyloid plaques in the microenvironment of brain cells and neurovascular walls, chronic neuroinflammation, resulting in neuronal and synaptic loss, myelin and axonal failure, as well as significant reduction in adult hippocampal neurogenesis. The hippocampal formation is particularly vulnerable to this degenerative process, due to early dysfunction of the cholinergic circuit.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!