AI Article Synopsis

Article Abstract

Purpose: To develop a machine learning model that predicts delirium risk in geriatric internal medicine inpatients.

Methods: A prospective cohort study of internal medicine wards in a tertiary care hospital in China. Blinded observers assessed delirium using the Confusion Assessment Method (CAM). The data set was randomly divided into a training set (70%) and a test set (30%). The model was trained on the training set using the decision tree and the five-fold cross-validation, and then the model performance was evaluated on the test set. Under-sampling was used to address the class imbalance. The discriminatory power of the model was measured by the area under the receiver operating characteristic curve (AUC) and F1 score. The data set comprised 740 patients from March 2016 to January 2017.

Results: The training set included 518 patients; the median (IQR) age was 84 (79-87) years; 364 (70.3%) were men; 71 (13.7%) with delirium. The test set included 222 patients; the median (IQR) age was 84.5 (79-87) years; 163 (73.4%) were men; 30 (13.5%) with delirium. In total, the data set included 740 hospital admissions with a median (IQR) age of 84 (79-87) years, 527 (71.2%) were men, and 101 (13.6%) with delirium. From 32 potential predictors, we included five variables in the predictive model: depression, cognitive impairment, types of drugs, nutritional status, and activity of daily life (ADL). The mean AUC on the training set was 0.967, the AUC and F1 score on the test set was 0.950 and 0.810, respectively. The model achieved 93.3% sensitivity, 94.3% specificity, 71.8% positive predictive value, 98.9% negative predictive value, and 94.1% accuracy on the test set.

Conclusion: This machine learning model may allow more precise targeting of delirium prevention and could support clinical decision making in geriatric internal medicine wards.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s41999-021-00562-9DOI Listing

Publication Analysis

Top Keywords

internal medicine
16
training set
16
test set
16
machine learning
12
learning model
12
geriatric internal
12
data set
12
set included
12
median iqr
12
iqr age
12

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!