Using a Neural Network Analysis to Assess Stressors in the Farming Community.

Safety (Basel)

Psychology Department, Colorado State University, Fort Collins, CO 80523, USA.

Published: January 2020

In the 1980s and 1990s, with decreasing numbers of full-time farmers and adverse economic conditions, chronic stress was common in farmers, and remains so today. A neural network was implemented to conduct an in-depth analysis of stress risk factors. Two Colorado farm samples (1992-1997) were combined (n = 1501) and divided into training and test samples. The outcome, stress, was measured using seven stress-related items from the Center for Epidemiologic Studies-Depression Scale. The initial model contained 32 predictors. Mean squared error and model fit parameters were used to identify the best fitting model in the training data. Upon testing for reproducibility, the test data mirrored the training data results with 20 predictors. The results highlight the importance of health, debt, and pesticide-related illness in increasing the risk of stress. Farmers whose primary occupation was farming had lower stress levels than those who worked off the farm. Neural networks reflect how the brain processes signals from its environment and algorithms allow the neurons "to learn". This approach handled correlated data and gave greater insight into stress than previous approaches. It revealed how important providing health care access and reducing farm injuries are to reducing farm stress.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8455151PMC
http://dx.doi.org/10.3390/safety6020021DOI Listing

Publication Analysis

Top Keywords

neural network
8
training data
8
reducing farm
8
stress
7
network analysis
4
analysis assess
4
assess stressors
4
stressors farming
4
farming community
4
community 1980s
4

Similar Publications

In the fields of engineering, science, technology, and medicine, artificial intelligence (AI) has made significant advancements. In particular, the application of AI techniques in medicine, such as machine learning (ML) and deep learning (DL), is rapidly growing and offers great potential for aiding physicians in the early diagnosis of illnesses. Depression, one of the most prevalent and debilitating mental illnesses, is projected to become the leading cause of disability worldwide by 2040.

View Article and Find Full Text PDF

Transformers for Neuroimage Segmentation: Scoping Review.

J Med Internet Res

January 2025

Department of Computer Science and Software Engineering, United Arab Emirates University, Al Ain, United Arab Emirates.

Background: Neuroimaging segmentation is increasingly important for diagnosing and planning treatments for neurological diseases. Manual segmentation is time-consuming, apart from being prone to human error and variability. Transformers are a promising deep learning approach for automated medical image segmentation.

View Article and Find Full Text PDF

Background: Estimating the prevalence of schizophrenia in the general population remains a challenge worldwide, as well as in Japan. Few studies have estimated schizophrenia prevalence in the Japanese population and have often relied on reports from hospitals and self-reported physician diagnoses or typical schizophrenia symptoms. These approaches are likely to underestimate the true prevalence owing to stigma, poor insight, or lack of access to health care among respondents.

View Article and Find Full Text PDF

Pathway analysis plays a critical role in bioinformatics, enabling researchers to identify biological pathways associated with various conditions by analyzing gene expression data. However, the rise of large, multi-center datasets has highlighted limitations in traditional methods like Over-Representation Analysis (ORA) and Functional Class Scoring (FCS), which struggle with low signal-to-noise ratios (SNR) and large sample sizes. To tackle these challenges, we use a deep learning-based classification method, Gene PointNet, and a novel $P$-value computation approach leveraging the confusion matrix to address pathway analysis tasks.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!